Q-reeus said:
We know lowering any form of mass/energy of coordinate rest energy m down the potential well of some isolated massive body of rest energy M results in a net increase in gravitating mass to M+m√-gtt, less than M+m owing to 'redshift' of m. Which can be more or less directly linked to the mass 'redshift'by in principle annihilating m or rather m√-gtt and recovering the requisite redshifted radiation to infinity.
I see DaleSpam has commented on this as well; this way of putting things conceals a lot of interpretation of ambiguous terms. We've gone into this in previous threads, and somewhat in this one, but perhaps it's worth some further comments to capture the thoughts I've come up with:
Suppose I am "hovering" at some large distance above a Schwarzschild black hole, and I measure its mass, M, by putting test objects into orbits about the hole, measuring their orbital parameters, and applying Kepler's Third Law. Then I drop an object of mass m, where I determine m locally by some similar procedure, into the hole. (All objects so far are electrically neutral; I'll talk about the charged BH/charged object case later in this post.) There are at least three possible ways I can do this:
(1) If I just let the object free-fall into the hole, and it doesn't give off any radiation, then the hole's mass, measured by me in the same way as before, will increase by m.
(2) If I slowly lower the object into the hole, extracting work from the process as I do so, then I can make the mass increase of the hole as small as I want by lowering the object closer and closer to the horizon before I finally have to release it and let it free-fall the rest of the way. In principle, how close to the horizon I can lower the object and still extract work depends on how I lower it and the strength of the materials I use to do so; ultimately it depends on what (finite) proper acceleration the lower end of the mechanism for lowering, the one attached to the object, can withstand. The final mass increase of the hole, for an idealized process where I extract the maximum amount of work possible while lowering the object to some radius r > 2M, will be m \sqrt{1 - 2M / r}.
(3) If I let the object free-fall towards the hole, but at some radius r > 2M, I capture all its kinetic energy and convert that to outgoing radiation (say, for example, it hits a large mirror which stops it, converts its kinetic energy into heat, and then reflects all the heat outward as it radiates away), I can in principle make the mass increase of the hole as small as I want, just as in #2 above, by moving the stopping point closer to the horizon. The only difference, from my point of view, is that I am now not capturing the difference between m and m \sqrt{1 - 2M / r} as work; it's just radiating away as heat.
There's another subtle point about the above three scenarios: how do we define the "energy at infinity" present? The three applicable quantities are the Komar mass, the ADM mass, and the Bondi mass. Here's how I see those for the three scenarios above (all three scenarios assume that all masses except that of the hole and the object dropped/lowered in are negligible):
Starting state: all three masses are M + m. Mass M is the hole, mass m is the object we're about to drop/lower in, which is at some finite radius so all three masses will include it.
#1: All three are unchanged; the only change is that M + m is now all contained in the hole.
#2: All three are unchanged: the only change is that M + m \sqrt{1 - 2M / r} is contained in the hole, and the remainder of m is still at our finite radius, where we recaptured it as work extracted from the lowering process.
#3: The ADM mass and Komar mass are still M + m; however, the Bondi mass is now decreased to M + m \sqrt{1 - 2M / r}, the new mass of the hole, because it will not include the mass (energy) of the radiation that escaped to infinity.
Now, suppose we do similar experiments to the above, but with a charged (R-N) black hole and a charged object. We have two possible cases, opposite charges and like charges. I am not presently working the math in detail as DaleSpam is, but it looks to me like the following are key points:
First, there should be a sort of ADM charge/Komar charge/Bondi charge for the spacetime as a whole, definable similar to the way the corresponding masses are defined. For the case we're considering, this total would include *both* the charge Q of the hole *and* the charge q of the object that's going to be dropped or lowered in. We, at a large finite radius, would measure the charge Q of the hole using charged test objects, similar to the way we measured its mass M by Keplerian orbits; we would also locally measure the charge q of the object to be dropped/lowered in similar to the way we measured its mass m locally.
Second, at the starting state, all three of the ADM/Komar/Bondi charges should be equal, just as the masses are; they should all be Q + q. However, at the end state for *any* of the three scenarios, *all three* charges should still be unchanged, *unlike* the case for masses above. This is because there is no way to radiate charge "away to infinity" as we can with mass by converting it into radiation. This is a key difference between mass and charge. (Note: it *is* possible for the charge q of the object dropped into cancel some or even all of the charge Q of the hole. However, if that is the case, all three of the ADM/Komar/Bondi charges *already* comprehend that; they already "see" the net charge, Q + q, which will be less than Q if q is of opposite sign.)
Third, if the object I am going to drop/lower into the hole is charged, then there is an extra energy e present in the spacetime as a whole, i.e., in the starting ADM/Komar/Bondi energy, due to the extra potential energy due to the charges Q and q being separated. So the total starting energy is M + m + e.
Note that as I've just defined it, e is positive if Q and q are of opposite sign--in this case, if I do a process like #2 or #3 above, I can in principle capture up to m + e of energy as work, or have that much energy radiate away to infinity, instead of it going into the hole. The final mass of the hole will be M + (m + e) * sqrt(1 - 2M/r), where r is the radius of the "stopping point", with the remainder of m + e captured as work or radiated away to infinity. The ADM/Komar mass will not change, and the Bondi mass will decrease to the new mass of the hole.
If Q and q are of the same sign, e will be *negative*. Depending on how large e is compared to m, it may be possible to do processes #1, #2, or #3 above, but capturing less energy than m (instead of more, as above); or it may not be possible to do them at all, because the electrical repulsion between the hole and the object is enough to require work to be *added* to the object to make it fall below the horizon.
Sorry for the long post, but I wanted to get all that down while it was fresh in my mind.