Is F(n) = 3+5+7...+2n Identical to F(n) = n(n+1)?

  • Thread starter Thread starter goofyfootsp
  • Start date Start date
  • Tags Tags
    Function
goofyfootsp
Messages
12
Reaction score
0
F(n) = 2+4+6=...+2n
I know the expression that represents the given function is F(n) = n(n+1),

my question is F(n) = 3+5+7...2n the same F(n) = n(n+1)< if not can anyone expain?

Thanks
 
Mathematics news on Phys.org


F(n) = 3+5+7...2n
Please correct! You have a sequence of odd numbers, but the end term is even!
 


This was gone into from General Math: Simple Sequences. The nth term is

\sum_1^n (2j-1)=n^2. Or: 1=1, 1+3=2^2, 1+3+5 = 3^2, etc...
 
Last edited:


Why should they have the same sum when you are summing different numbers?

It is not to difficult to show that if you have any arithmetic sequence: an= a+ id, where a and d are fixed and i ranges from 1 to n, sums to n times the average of a1 and an: n*(a+ d+ (a+ nd))/2= n(a+ (d/2)(n+1)).

In the case of 2+ 4+ 6+ ...+ 2n, a= 0 and d= 2. The sum is n(0+ (2/2)(n+1)= n(n+1)
In the case of 1+ 3+ 5+ ...+ 2n+1, a= -1 and d= 2. The sum is n(-1+ (2/2)(n+1))= n2.
 


Thank you all for your help in explaining this, I appreciate it greatly.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top