jaw088
- 2
- 0
Hi,
I'm trying to proof that:
\left\lfloor \frac{\left\lfloor x \right\rfloor}{y} \right\rfloor= \left\lfloor \frac{x}{y} \right\rfloor for the specific case where y is an integer.
At the recommendation of somebody who I discussed the problem with, here's how I started:
\lfloor x \rfloor \le x < \lfloor x \rfloor + 1
\frac{\lfloor x \rfloor}{y} \le \frac{x}{y} < \lfloor \frac{x}{y} \rfloor + \frac{1}{y}
\left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor \le \left\lfloor \frac{x}{y} \right\rfloor
And from there, prove that the case of \left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor < \left\lfloor \frac{x}{y} \right\rfloor is impossible, leaving \left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor = \left\lfloor \frac{x}{y} \right\rfloor
Any ideas?
Thanks for your help,
John
I'm trying to proof that:
\left\lfloor \frac{\left\lfloor x \right\rfloor}{y} \right\rfloor= \left\lfloor \frac{x}{y} \right\rfloor for the specific case where y is an integer.
At the recommendation of somebody who I discussed the problem with, here's how I started:
\lfloor x \rfloor \le x < \lfloor x \rfloor + 1
\frac{\lfloor x \rfloor}{y} \le \frac{x}{y} < \lfloor \frac{x}{y} \rfloor + \frac{1}{y}
\left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor \le \left\lfloor \frac{x}{y} \right\rfloor
And from there, prove that the case of \left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor < \left\lfloor \frac{x}{y} \right\rfloor is impossible, leaving \left\lfloor \frac{\lfloor x \rfloor}{y} \right\rfloor = \left\lfloor \frac{x}{y} \right\rfloor
Any ideas?
Thanks for your help,
John