Is Griffith's Treatment of Spin in Quantum Mechanics Misinterpreted?

lion8172
Messages
27
Reaction score
0

Homework Statement



I have a question relating to Griffith's treatment of spin. Griffiths shows, using the commutation relations for angular momentum, that L^2 has eigenvalues l(l+1), where l=0, 1/2, 1, 3/2, ... He also shows that the operator
-\hbar^2 \left( \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left( \sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right)
only admits eigenvalues with integral values of l, by directly solving the differential equation. At one point, he states that the above expression is equal to L^2. My question is as follows: Is it correct to state that the half-integral eigenvalues are automatically excluded when L^2 is parametrized in terms of angles, and is it true to state that L^2 is not, in general, equal to the expression above? Spin and angular momentum satisfy the same commutation relations, so would it be correct to state that "angular momentum" is a kind of "spin" which is generated by an operator of the form (\hbar/i) (\vec{r} \times \nabla)?

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
lion8172 said:

Homework Statement



I have a question relating to Griffith's treatment of spin. Griffiths shows, using the commutation relations for angular momentum, that L^2 has eigenvalues l(l+1), where l=0, 1/2, 1, 3/2, ... He also shows that the operator
-\hbar^2 \left( \frac{1}{\sin(\theta)} \frac{\partial}{\partial \theta} \left( \sin(\theta) \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2(\theta)} \frac{\partial^2}{\partial \phi^2} \right)
only admits eigenvalues with integral values of l, by directly solving the differential equation. At one point, he states that the above expression is equal to L^2. My question is as follows: Is it correct to state that the half-integral eigenvalues are automatically excluded when L^2 is parametrized in terms of angles, and is it true to state that L^2 is not, in general, equal to the expression above? Spin and angular momentum satisfy the same commutation relations, so would it be correct to state that "angular momentum" is a kind of "spin" which is generated by an operator of the form (\hbar/i) (\vec{r} \times \nabla)?

Homework Equations





The Attempt at a Solution


Yes, what you say is basically correct. The language people use is slightly different, however. What you call angular momentum (represented as a differential operator acting in space) should be called "orbital angular momentum". What you call spin for the more general concept is usually called "angular momentum".

SO spin and orbital angular momenta are two types of "angular momentum". Spin is also called "intrinsic" angular momentum and is represented by matrices acting in an internal space. Orbital angular momentum is represented by differential operators acting in ordinary space.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top