Is integration of polynomial a bilinear for

jut24
Messages
1
Reaction score
0
Hello,

I am begin billinear form and need help with a proof

say you have an integral from 0 to 1 f(x)g(x) is it bilinear if show how do you prove that it is.
2) Can someone explain the significance of kroenecker delta.



Jut24
 
Physics news on Phys.org
jut24 said:
Hello,

I am begin billinear form and need help with a proof

say you have an integral from 0 to 1 f(x)g(x) is it bilinear if show how do you prove that it is.
Directly.
 
In other words, you prove that \int f(x)g(x)dx is bilinear by showing that it satisfies the definition of "bilinear":

Is \int_0^1 (af(x)+ bg(x))h(x)dx= a\int_0^1 f(x)h(x)dx+ b\int_0^1 g(x)h(x)dx?
Is \int_0^1 f(x)(ag(x)+ bh(x))dx= a\int_0^1 f(x)g(x)dx+ b\int_0^1 f(x)h(x)dx?
 
on this topic:

this bilinear form is non-degenerate right?

I'm not exactly sure how to show that though...
 
Well, what is the definition of "non-degenerate"?
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...
Back
Top