Is it Possible to Create a Sequence That Visits 0, 1, and 5 Infinitely Often?

  • Thread starter Thread starter adrivit
  • Start date Start date
  • Tags Tags
    Sequence
adrivit
Messages
6
Reaction score
0
Construct a sequence that visits the numbers 0,1,5 infinitely often.?
A sequence Sn visits a number A when for infinitely many n in N, Sn = A. Example: The sequence (-1)^n visits -1 and 1 infinitely.
 
Physics news on Phys.org
n mod 6?
 
(3^n - 1) mod 7?
 
or even ((n mod 3)+5)mod 6.
 
Or (11^n mod 37) mod 6.
 
0,-1,1,0,-1,1,-2,2,0,-1,1,-2,2,-3,3,0,-1,1,-2,2,-3,3,-4,4,... visits all integers infinitely often.
 
2 - (cos(2\pi n/3) + cos(4\pi n/3)) - (2/\sqrt{3})(sin(2\pi n/3) - sin(4\pi n/3))
 
Last edited:
\sum_{k=1}^n a_k \, , \quad \mbox{where } a_k \mbox{ is the recurrence sequence given by}

<br /> \begin{align*}<br /> a_1 &amp;= 1 \\<br /> a_2 &amp;= 4 \\<br /> a_k &amp;= -a_{k-1}-a_{k-2} \, , \quad \scriptstyle{k \ge 3}<br /> \end{align*}<br />
 
\left\lfloor(50/333)*10^n\right\rfloor mod 10
 
  • #10
Dodo said:
\sum_{k=1}^n a_k \, , \quad \mbox{where } a_k \mbox{ is the recurrence sequence given by}

<br /> \begin{align*}<br /> a_1 &amp;= 1 \\<br /> a_2 &amp;= 4 \\<br /> a_k &amp;= -a_{k-1}-a_{k-2} \, , \quad \scriptstyle{k \ge 3}<br /> \end{align*}<br />
This sequence doesn't contain even one zero. There must be a typo or something! Oh! I get It Sum 1,4,-5 = 0 etc/
 
Last edited:
Back
Top