Is My Approach to Solving a Source-Free RLC Series Circuit Correct?

AI Thread Summary
The discussion focuses on verifying the approach to solving a source-free RLC series circuit. The initial conditions are established with a voltage of 60V and a current of 1.2A before t=0. Key calculations include determining the damping factor (α) as 1.5 and the natural frequency (ω_o) as √2. The derived expressions for current, including coefficients A and B, are confirmed with A=1.2 and B=-20.4 under specific conditions. The conversation highlights the importance of correctly interpreting initial conditions and their impact on the circuit's behavior.
wcjy
Messages
73
Reaction score
10
Homework Statement
Given the following circuit with the source voltage V1=60(V). The switch in the following circuit has been connected to A for a long time and is switched to B at t=0. The current i(t) through the capacitor C for t>0 has the following expression:

$$i(t) = Ae^{xt} + Be^{yt}$$
Relevant Equations
$$α = \frac{R}{2L}$$
$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
Hello, this is my working. My professor did not give any answer key, and thus can I check if I approach the question correctly, and also check if my answer is correct at the same time.

for t < 0,
V(0-) = V(0+) = 60V
I(0) = 60 / 50 = 1.2A

When t > 0,
$$α = \frac{R}{2L}$$
$$α = \frac{30}{2(10)}$$
$$α = 1.5 $$

$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ω_o = \frac{1}{\sqrt{10*50*10^{-3}}}$$
$$ω_o = \sqrt{2}$$

$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
$$ S_{1,2} = - 1.5 +- \sqrt{ 1.5^2 - \sqrt{2}^2}$$
$$ S_{1,2} = -1.5 +- j0.5$$

$$i(t) = e^{-1.5t}[Acos(0.5t) + Bsin(0.5t)]$$
When t = 0, i = 1.2
$$ A = 1.2$$

when t = 0
$$L\frac{di}{dt} + Ri + V= 0$$
$$\frac{di}{dt} =-\frac{1}{L} (Ri + V)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -12$$

when t = 0
$$\frac{di}{dt} = -1.5[ e^{1.5t} [ Acos(0.5t) + Bsin(0.5t)]] + 0.5e^{-1.5t}[-Asin(0.5t)+Bcos(0.5t)]$$
$$-12 = -1.5A + 0.5B$$
$$ B = -20.4$$

Therefore
A = 1.2
B = -20.4
x = 1.5
y = 1.5
 

Attachments

  • 1615636663356.png
    1615636663356.png
    104 KB · Views: 165
Physics news on Phys.org
The statement says the switch has been in in the A position for a long time (the capacitor id "fully" charged). No current flows in the "initial" condition.
 
oh so if I(0) = 0,
A = 0
di/dt = -6
B = -12
the rest remains the same?
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
Back
Top