Is My Approach to Solving a Source-Free RLC Series Circuit Correct?

AI Thread Summary
The discussion focuses on verifying the approach to solving a source-free RLC series circuit. The initial conditions are established with a voltage of 60V and a current of 1.2A before t=0. Key calculations include determining the damping factor (α) as 1.5 and the natural frequency (ω_o) as √2. The derived expressions for current, including coefficients A and B, are confirmed with A=1.2 and B=-20.4 under specific conditions. The conversation highlights the importance of correctly interpreting initial conditions and their impact on the circuit's behavior.
wcjy
Messages
73
Reaction score
10
Homework Statement
Given the following circuit with the source voltage V1=60(V). The switch in the following circuit has been connected to A for a long time and is switched to B at t=0. The current i(t) through the capacitor C for t>0 has the following expression:

$$i(t) = Ae^{xt} + Be^{yt}$$
Relevant Equations
$$α = \frac{R}{2L}$$
$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
Hello, this is my working. My professor did not give any answer key, and thus can I check if I approach the question correctly, and also check if my answer is correct at the same time.

for t < 0,
V(0-) = V(0+) = 60V
I(0) = 60 / 50 = 1.2A

When t > 0,
$$α = \frac{R}{2L}$$
$$α = \frac{30}{2(10)}$$
$$α = 1.5 $$

$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ω_o = \frac{1}{\sqrt{10*50*10^{-3}}}$$
$$ω_o = \sqrt{2}$$

$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
$$ S_{1,2} = - 1.5 +- \sqrt{ 1.5^2 - \sqrt{2}^2}$$
$$ S_{1,2} = -1.5 +- j0.5$$

$$i(t) = e^{-1.5t}[Acos(0.5t) + Bsin(0.5t)]$$
When t = 0, i = 1.2
$$ A = 1.2$$

when t = 0
$$L\frac{di}{dt} + Ri + V= 0$$
$$\frac{di}{dt} =-\frac{1}{L} (Ri + V)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -12$$

when t = 0
$$\frac{di}{dt} = -1.5[ e^{1.5t} [ Acos(0.5t) + Bsin(0.5t)]] + 0.5e^{-1.5t}[-Asin(0.5t)+Bcos(0.5t)]$$
$$-12 = -1.5A + 0.5B$$
$$ B = -20.4$$

Therefore
A = 1.2
B = -20.4
x = 1.5
y = 1.5
 

Attachments

  • 1615636663356.png
    1615636663356.png
    104 KB · Views: 169
Physics news on Phys.org
The statement says the switch has been in in the A position for a long time (the capacitor id "fully" charged). No current flows in the "initial" condition.
 
oh so if I(0) = 0,
A = 0
di/dt = -6
B = -12
the rest remains the same?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top