Is My Approach to Solving a Source-Free RLC Series Circuit Correct?

AI Thread Summary
The discussion focuses on verifying the approach to solving a source-free RLC series circuit. The initial conditions are established with a voltage of 60V and a current of 1.2A before t=0. Key calculations include determining the damping factor (α) as 1.5 and the natural frequency (ω_o) as √2. The derived expressions for current, including coefficients A and B, are confirmed with A=1.2 and B=-20.4 under specific conditions. The conversation highlights the importance of correctly interpreting initial conditions and their impact on the circuit's behavior.
wcjy
Messages
73
Reaction score
10
Homework Statement
Given the following circuit with the source voltage V1=60(V). The switch in the following circuit has been connected to A for a long time and is switched to B at t=0. The current i(t) through the capacitor C for t>0 has the following expression:

$$i(t) = Ae^{xt} + Be^{yt}$$
Relevant Equations
$$α = \frac{R}{2L}$$
$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
Hello, this is my working. My professor did not give any answer key, and thus can I check if I approach the question correctly, and also check if my answer is correct at the same time.

for t < 0,
V(0-) = V(0+) = 60V
I(0) = 60 / 50 = 1.2A

When t > 0,
$$α = \frac{R}{2L}$$
$$α = \frac{30}{2(10)}$$
$$α = 1.5 $$

$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ω_o = \frac{1}{\sqrt{10*50*10^{-3}}}$$
$$ω_o = \sqrt{2}$$

$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
$$ S_{1,2} = - 1.5 +- \sqrt{ 1.5^2 - \sqrt{2}^2}$$
$$ S_{1,2} = -1.5 +- j0.5$$

$$i(t) = e^{-1.5t}[Acos(0.5t) + Bsin(0.5t)]$$
When t = 0, i = 1.2
$$ A = 1.2$$

when t = 0
$$L\frac{di}{dt} + Ri + V= 0$$
$$\frac{di}{dt} =-\frac{1}{L} (Ri + V)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -12$$

when t = 0
$$\frac{di}{dt} = -1.5[ e^{1.5t} [ Acos(0.5t) + Bsin(0.5t)]] + 0.5e^{-1.5t}[-Asin(0.5t)+Bcos(0.5t)]$$
$$-12 = -1.5A + 0.5B$$
$$ B = -20.4$$

Therefore
A = 1.2
B = -20.4
x = 1.5
y = 1.5
 

Attachments

  • 1615636663356.png
    1615636663356.png
    104 KB · Views: 163
Physics news on Phys.org
The statement says the switch has been in in the A position for a long time (the capacitor id "fully" charged). No current flows in the "initial" condition.
 
oh so if I(0) = 0,
A = 0
di/dt = -6
B = -12
the rest remains the same?
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top