Is My Approach to Solving a Source-Free RLC Series Circuit Correct?

Click For Summary
SUMMARY

The discussion focuses on solving a source-free RLC series circuit, specifically analyzing the initial conditions and the behavior of the circuit over time. The user calculates the initial voltage and current, determining that V(0) = 60V and I(0) = 1.2A. Key calculations include the damping factor α = 1.5 and the natural frequency ω_o = √2. The final expressions for current i(t) are derived, with constants A = 1.2 and B = -20.4, indicating the circuit's response after the switch has been in position A for a long time.

PREREQUISITES
  • Understanding of RLC circuit theory
  • Familiarity with differential equations
  • Knowledge of complex numbers in circuit analysis
  • Ability to apply initial conditions in circuit problems
NEXT STEPS
  • Study the derivation of the RLC circuit response using Laplace transforms
  • Learn about the impact of varying resistance and inductance on circuit behavior
  • Explore the use of simulation tools like LTspice for circuit analysis
  • Investigate the effects of initial conditions on transient response in RLC circuits
USEFUL FOR

Electrical engineering students, circuit designers, and anyone involved in analyzing transient responses in RLC circuits will benefit from this discussion.

wcjy
Messages
73
Reaction score
10
Homework Statement
Given the following circuit with the source voltage V1=60(V). The switch in the following circuit has been connected to A for a long time and is switched to B at t=0. The current i(t) through the capacitor C for t>0 has the following expression:

$$i(t) = Ae^{xt} + Be^{yt}$$
Relevant Equations
$$α = \frac{R}{2L}$$
$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
Hello, this is my working. My professor did not give any answer key, and thus can I check if I approach the question correctly, and also check if my answer is correct at the same time.

for t < 0,
V(0-) = V(0+) = 60V
I(0) = 60 / 50 = 1.2A

When t > 0,
$$α = \frac{R}{2L}$$
$$α = \frac{30}{2(10)}$$
$$α = 1.5 $$

$$ω_o = \frac{1}{\sqrt{LC}}$$
$$ω_o = \frac{1}{\sqrt{10*50*10^{-3}}}$$
$$ω_o = \sqrt{2}$$

$$ S_{1,2} = - α +- \sqrt{ α^2 - w_o^2}$$
$$ S_{1,2} = - 1.5 +- \sqrt{ 1.5^2 - \sqrt{2}^2}$$
$$ S_{1,2} = -1.5 +- j0.5$$

$$i(t) = e^{-1.5t}[Acos(0.5t) + Bsin(0.5t)]$$
When t = 0, i = 1.2
$$ A = 1.2$$

when t = 0
$$L\frac{di}{dt} + Ri + V= 0$$
$$\frac{di}{dt} =-\frac{1}{L} (Ri + V)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -\frac{1}{10} ((50)\frac{6}{5} + 60)$$
$$\frac{di}{dt} = -12$$

when t = 0
$$\frac{di}{dt} = -1.5[ e^{1.5t} [ Acos(0.5t) + Bsin(0.5t)]] + 0.5e^{-1.5t}[-Asin(0.5t)+Bcos(0.5t)]$$
$$-12 = -1.5A + 0.5B$$
$$ B = -20.4$$

Therefore
A = 1.2
B = -20.4
x = 1.5
y = 1.5
 

Attachments

  • 1615636663356.png
    1615636663356.png
    104 KB · Views: 180
Physics news on Phys.org
The statement says the switch has been in in the A position for a long time (the capacitor id "fully" charged). No current flows in the "initial" condition.
 
oh so if I(0) = 0,
A = 0
di/dt = -6
B = -12
the rest remains the same?
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
832
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
3
Views
1K
Replies
1
Views
9K