Is my solution for the implicit differentiation of x^2+xsin^-1y=ye^x correct?

  • Thread starter Thread starter nameVoid
  • Start date Start date
  • Tags Tags
    Inverse Trig
nameVoid
Messages
238
Reaction score
0
x^2+xsin^-1y=ye^x

implict dif

2x+xy'/(1-x^2)^(1/2)+sin^(-1)y=ye^x+y'e^x
xy'/(1-x^2)^(1/2)-y'e^x=ye^x-sin^(-1)y-2x
y'=(ye^x-sin^(-1)y-2x)/(x/(1-x^2)^(1/2)-e^x)
can somone please verify
 
Physics news on Phys.org
nameVoid said:
x^2+xsin^-1y=ye^x
2x+xy'/(1-x^2)^(1/2)+sin^(-1)y=ye^x+y'e^x

You're differentiating sin^-1y with respect to x, so you use the chain rule and first differentiate with respect to y, then derive y with respect to x, then multiply the two derivatives together. That would give you 1/sqrt(1-y^2) * dy/dx, not 1/sqrt(1-x^2) *dy/dx
 
ah yes that was a typeo on my part my solution is

(ye^x-sin^-1y-2x)/(x/(1-y^2)^(1/2)-e^x)
my book is showing
(ye^x-2x-sin^-1y)/(x/((1-y^2)^(1/2)-e^x))

which divides (1-y^2)^(1/2)-e^x into x not just x/(1-y^2)^(1/2) i don't believe these solutions are equal
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top