bancux
- 11
- 0
Homework Statement
I need to work on a differential equation.
<br /> \frac{d^2T}{dx^2} - (m+n\ sin(kx))\ T = 0<br />
Homework Equations
Is my work correct?
The Attempt at a Solution
<br /> \frac{d^2T}{dx^2} - (m+n\ sin(kx))\ T = 0<br />
<br /> \frac{d}{dx}\left(\frac{dT}{dx} \right) = (m+n\ sin(kx))\ T <br />
<br /> \int \frac{d}{T}\left(\frac{dT}{dx} \right) = \int (m+n\ sin(kx)) \ dx<br />
<br /> \frac{1}{T}\left(\frac{dT}{dx} \right) = mx-\frac{n}{k}\ cos(kx)+C_1<br />
<br /> \int \frac{dT}{T} = \int (mx-\frac{n}{k}\ cos(kx)+C_1)\ dx<br />
<br /> ln T = \frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x+C_2<br />
<br /> T = e^{\frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x}\ e^{C_2}<br />
<br /> T = e^{\frac{m}{2}x^2-\frac{n}{k^2}sin(kx)+C_1x}\ C_2<br />