Is reduction of order a simpler method for solving this integral?

  • Thread starter Thread starter VonWeber
  • Start date Start date
  • Tags Tags
    Integral
VonWeber
Messages
52
Reaction score
0
The problem has ty'' - (1 + t)y' + y = (t^2)e^2t

y1 = 1 + t

Solve by reduction of order

When I solve by variation of parameters I get:

y = .5te^2t - .5e^2t + ce^t + d(1 + t)

But solving with reduction of order gives very difficult integrals
 

Attachments

  • HW31.jpg
    HW31.jpg
    58.5 KB · Views: 1,953
Physics news on Phys.org
Well I should have seen this one

(ue^u - e^u)/u^2 is a quotient rule.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top