Is Set a Basis for C^3 as a C-Vector Space?

  • Thread starter Thread starter jeffreylze
  • Start date Start date
  • Tags Tags
    Basis Space
jeffreylze
Messages
43
Reaction score
0

Homework Statement



determine whether or not the given set is a basis for C^3 ( as a C-vector space)

(a) {(i,0,-1),(1,1,1),(0,-i,i)}
(b) {(i,1,0),(0,0,1)}

Homework Equations





The Attempt at a Solution



All I did was to put the 3 vectors in part (a) into a matrix as 3 columns. Then I determined that the matrix has 3 leading entries, hence it is a basis. But when I tried using the same method for part (b), it doesn't work. Why is that so?
 
Physics news on Phys.org
The set in b has only two vectors, which isn't enough for a basis for C^3. There are some vectors in C^3 that aren't any linear combination (i.e., a sum of (complex) scalar multiples of (i, 1, 0) and (0, 0, 1).
 
But what i did for part(a) is right?
 
Assuming your work is correct, yes. A basis for C^3 has to have three vectors in it. If you have three vectors that are linearly independent, that's a basis.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top