- 7,794
- 503
All the molecules in the merry-go-round and rider exert forces on each other. But the net force on each particle is a centripetal force. Those centripetal forces sum to zero if the mass is distributed symmetrically in the merry-go-round (ie. the centre of rotation is the centre of mass). (They do not sum to zero if the centre of rotation is not the centre of mass, in which case there is a net force on the Earth which has to be included.) But from Newton's third law, we know that all action/reaction pairs must sum to zero. Therefore, the centripetal forces on all the molecules in the merry-go-round must include all action and reaction pairs. So the reaction force to a centripetal force must be another centripetal force. There can be no centrifugal reaction force. If you add in a "real" centrifugal force they do not sum to zero.Doc Al said:Would you not agree that the merry-go-round must exert a centripetal force on the rider? If so, then the rider exerts and equal and opposite (in this case, outward) force on the merry-go-round. Simple as that. (Call that force what you will.)
The confusion arises if the merry-go-round is not balanced so that the (apparent) centripetal forces about the centre of the merry-go-round do not sum to zero. In order to make these apparent centripetal forces sum to 0 one has to postulate a centrifugal force on the centre of rotation. But that is a mistake because the centre of the merry-go-round is not an inertial frame in that case. There is a force on the Earth that accelerates the earth, and the merry-go-round centre, towards the centre of mass of the earth/merry-go-round system. In order to see this, one has to think of the Earth as being much less massive than it is.
AM
Last edited: