the fact that the absolute value is continuous implies the converse is true. More interesting is the fact that the theorem itself is not always true. I.e. the absolute values lie in the real numbers which is a complete field, but the original points may lie in a non complete space, hence the absolute values may converge in the reals, without the original points themselves converging in the original space. E.g. let the original space be the rationals. Then one can have the absolute values of a sequence of rationals converging in the reals to an irrational number, whence the original points do not converge in the rationals. In general absolute convergence of a sequence of points of a normed vector space implies convergence of the sequence itself if and only if cauchy convergence implies convergence, i.e. completeness holds. I hope this is correct; it has been over 50 years since I learned this from Lynn Loomis, but it is pretty firm in memory.
a reference is Advanced Calculus by Loomis and Sternberg, Theorem 7.11 page 221, and exercise 7.19, p. 223.