Is the Distance Between Two Moving Boats Changing Over Time?

  • Thread starter Thread starter pyrojelli
  • Start date Start date
  • Tags Tags
    Triangle
pyrojelli
Messages
16
Reaction score
0
1. Two boats start out 800 miles apart with boat A directly to the west of boat B. At the same time both boats start moving with boat A traveling to the east at 40mph while boat B travels north at 20mph. Determine if the distance between the boats is increasing, decreasing, or not changing after the following travel times: (a) 7 hours (b) 16 hours (c) 25 hours



2. I attempted to break apart their distances traveled by using component vector analysis. The distance between the two boats is the hypotenuse of whatever triangle they produce on the graph at a certain time. We want to find d'.



3. d'=? I park boat A at origin, therefore its cartesian coordinates are (0, 0), so boat B must be at (0, 800)

For part (a) I use vector components: A in x-direction: 400(7)=280 x-direction
So A is at (280, 0) since it does change in relation to y-axis (vice-versa for B)
B in y-direction: 20(7)=140 so B is (800, 140)
Base distance is 800-280=520 Height is just 140
I got the distance between them by using the distance formula: d=square root(520^2 + 140^2)= 538.516miles


How do I proceed to find h' ?
 
Physics news on Phys.org
From what I know, we can not use properties of similar triangles since the boats are moving at different rates.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top