Is the Hydrogen Atom Ground State Wave Function Normalized?

jg370
Messages
16
Reaction score
0

Homework Statement



The ground state wave function for the electron in a hydrogen atom is:

\psi(r) = \frac{1}{\sqrt (\pi a_o^3)} e^\frac{-r}{a_o}

where r is the radial coordinate of the electron and a_o is the Bohr radius.

Show that the wave function as given is normalized.


Homework Equations



Any wave function satisfying the following equation is said to be normalized:

\int_{-\infty}^{+\infty} |\psi|^2\dx = 1


The Attempt at a Solution



Because the sum of all probabilities over all values of r must be 1,

\int_{-\infty}^{+\infty} (\frac{1}{\sqrt (\pi a_o^3)} e^\frac{-r}{a_o})^2 dr = \frac{1}{\pi a_o^3} \int_{-\infty}^{+\infty} e^\frac{-2r}{a_o^2} dr = 1

Since the integral can be expressed as the sum of two integrals, we have,

\frac{1}{\pi a_o^3} \int_{-\infty}^{+\infty} e^\frac{-2r}{a_o^2} dr = \frac{2}{\pi a_o^3} \int_0^{+\infty} e^\frac{-2r}{a_o^2} dr = 1

After integrating, I obtain,

\frac{1}{\pi a_o^3} = 1

which is definitely incorrect. However, I do not see any other way to proceed. could someone give some assitance.

Thanks for your kind assistance

jg370
 
Physics news on Phys.org
you integrated wrong -
\int_0^{\infty} e^{-\frac{2r}{a_0^2}} dr = [-\frac{a_0^2}{2} e^{-\frac{2r}{a_0^2}]_0^{\infty}=\frac{a_0^2}{2}

which gives \frac{1}{2 \pi a_0}=1
 
the a_0 in your exponent shouldn't be squared, also the normalization condition says you should integrate over the bounds of your function. if r is the radial coordinate then how can it have a value of negative infinity? similarly your no longer normalizing in 1-d but 3D I recommend using spherical coordinates in which case your integral inherits a r^2 sin theta
 
Tks. I wil try again using spherical coordinates
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top