Is the Lorentz Boost Generator Commutator Zero?

han
Messages
2
Reaction score
0
Homework Statement
Show that ##[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=0## where ##M_{\mu\nu}## is a Lorentz boost generator
Relevant Equations
The commutation relation of ##M_{\mu\nu}## is given: $$[M_{\rho \sigma},M_{\alpha\beta}]=i(g_{\rho\beta}M_{\sigma\alpha}+g_{\sigma\alpha}M_{\rho\beta}-g_{\rho\alpha}M_{\sigma\beta}-g_{\sigma\beta}M_{\rho\alpha}).$$
Using above formula, I could calculate the given commutator.
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$
(because ##\epsilon^{\mu\nu\rho\sigma}=\epsilon^{\rho\sigma\mu\nu}##, ##(\mu\nu)\leftrightarrow(\rho\sigma)## preserves the result in the 2nd term)
$$
=i\epsilon^{\mu\nu\rho\sigma}(g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})+g_{\sigma\alpha}(M_{\mu\nu}M_{\rho\beta}+M_{\rho\beta}M_{\mu\nu})-g_{\rho\alpha}(M_{\mu\nu}M_{\sigma\beta}+M_{\sigma\beta}M_{\mu\nu})-g_{\sigma\beta}(M_{\mu\nu}M_{\rho\alpha}+M_{\rho\alpha}M_{\mu\nu}))
$$

And my calculation stuck here. I could not find any clue that the terms in above formula cancel each other.

I personally checked that for a specific example like taking ##\alpha=1, \beta=2##, the commutator is indeed zero.

It feels like any sign in the 3rd or 4th term is miscalculated and symmetricity in ##\rho## and ##\sigma## combines with the antisymmetric tensor and give the result zero, but I could not find where did I make a mistake on the signs.

Additionally, the term ##\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma}## is not explicity zero for example on spinor, where ##M_{\mu \nu}=\frac{i}{4}[\gamma^{\mu},\gamma^{\nu}]##, you can check that the given expression is proportional to ##\gamma^5##.

Edit: I found out by directly calculating that $$
\epsilon^{\mu\nu\rho\sigma}g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})$$
term itself is already zero. Again for example when ##\alpha=1,\beta=2## case,
$$
\begin{align}
\epsilon^{\mu\nu\rho\sigma}g_{\rho 2}(M_{\mu\nu}M_{\sigma 1}+M_{\sigma 1}M_{\mu\nu})\\ \nonumber
&=\epsilon^{\mu\nu 23}g_{22}(M_{\mu\nu}M_{31}+M_{31}M_{\mu\nu})+\epsilon^{\mu\nu 20}g_{22}(M_{\mu\nu}M_{01}+M_{01}M_{\mu\nu})\\ \nonumber
&=\epsilon^{0123}g_{22}(M_{01}M_{31}+M_{31}M_{01})+\epsilon^{1320}g_{22}(M_{13}M_{01}+M_{01}M_{13})\\ \nonumber
&=-(M_{01}M_{31}+M_{31}M_{01})+(M_{31}M_{01}+M_{01}M_{31})=0 \nonumber
\end{align}
$$
(Using ##g_{00}=+1, g_{11}=g_{22}=g_{33}=-1## convention)
So it's enough to show that the form ##\epsilon^{\mu\nu\rho\sigma}g_{\rho\beta}(M_{\mu\nu}M_{\sigma\alpha}+M_{\sigma\alpha}M_{\mu\nu})## is zero. But I have no clue how to show this formula is zero with algebraic steps, like switching indicies and cancel the terms out.
 
Last edited:
Physics news on Phys.org
han said:
[....]

Using above formula, I could calculate the given commutator.
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$
I believe this should read...
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})
$$
Lie brackets obey a Leibniz rule: [AB,C] = A[B,C]+[A,C]B.
In detail: [AB,C]=ABC-CAB = ABC-ACB+ACB-CAB.
 
jambaugh said:
I believe this should read...
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=i\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})
$$
Lie brackets obey a Leibniz rule: [AB,C] = A[B,C]+[A,C]B.
In detail: [AB,C]=ABC-CAB = ABC-ACB+ACB-CAB.
You can check that
$$
[\epsilon^{\mu\nu\rho\sigma} M_{\mu \nu}M_{\rho\sigma},M_{\alpha\beta}]=\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})=\epsilon^{\mu\nu\rho\sigma}(M_{\mu \nu}[M_{\rho\sigma},M_{\alpha\beta}]+[M_{\rho\sigma},M_{\alpha\beta}]M_{\mu \nu})
$$

Because
$$
\epsilon^{\mu\nu\rho\sigma}[M_{\mu\nu},M_{\alpha\beta}]M_{\rho \sigma})=\epsilon^{\rho\sigma\mu\nu}[M_{\rho \sigma},M_{\alpha\beta}]M_{\mu\nu})=\epsilon^{\mu\nu\rho\sigma}[M_{\rho \sigma},M_{\alpha\beta}]M_{\mu\nu})
$$
##\mu\nu\rho\sigma## and ##\rho\sigma\mu\nu## both are even permutations.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top