brian_m.
- 5
- 0
Hello.
Let x \in \mathbb R^n and t \in \mathbb R.
Prove the following equivalence:
\left \| x \right \|_2 \leq t \ \ \Leftrightarrow \ \ \begin{pmatrix} t \cdot I_n & x \\ x^T & t \end{pmatrix} \text{is positive semidefinite }
\left \| x \right \|_2 = \sqrt{x_1^2+ ... + x_n^2} is the euclidean norm and I_n the identity matrix of dimension n.
I know that a matrix is positive semidefinite if and only if all eigenvalues of the matrix are \geq 0.
My problem is to calculate the eigenvalues of the given matrix.
Thank your for your help in advance!
Bye,
Brian
Homework Statement
Let x \in \mathbb R^n and t \in \mathbb R.
Prove the following equivalence:
\left \| x \right \|_2 \leq t \ \ \Leftrightarrow \ \ \begin{pmatrix} t \cdot I_n & x \\ x^T & t \end{pmatrix} \text{is positive semidefinite }
Homework Equations
\left \| x \right \|_2 = \sqrt{x_1^2+ ... + x_n^2} is the euclidean norm and I_n the identity matrix of dimension n.
The Attempt at a Solution
I know that a matrix is positive semidefinite if and only if all eigenvalues of the matrix are \geq 0.
My problem is to calculate the eigenvalues of the given matrix.
Thank your for your help in advance!
Bye,
Brian