Is the Real-Line a Fractal? Weak Points Examined

  • Thread starter Thread starter Shemesh
  • Start date Start date
AI Thread Summary
The discussion focuses on the concept of the real line as a fractal and the implications of local and global scale factors within this framework. Critics point out that the initial argument relies on unproven assumptions and undefined terms, such as "local," "global," and "magnitude." The notion of simultaneous existence of real numbers at multiple scales is debated, with emphasis on the need for clearer definitions and explanations. Concerns are raised about the relevance of fractals to the argument, questioning the coherence of the claims made. Overall, the conversation highlights significant gaps in the reasoning and terminology used in the original proposal.
Shemesh
Messages
27
Reaction score
0
Reexamination of the Real-Line

If any local R member is also a global scale factor on the entire real-line and this duality recursively defines R members, then the real-line is a fractal as I show here:

http://www.geocities.com/complementarytheory/Real-Line.pdf


Please show me what are the weak points here?

Matt Grime said:
1. you begin with an if for a start, and don't prove that it is a non-vacuous case, but that could be hard because:
2. none of those terms are extant, ie known, or if they are you are using them in a way that is not understood by anyone else

words that need explanation:
local, member (but we presume you mean element), global, scale, factor, duality, fractal (you would need to prove that this statement is equiavalent to the statement R is a fractal)
 
Last edited:
Physics news on Phys.org
An explanation of Vacuous Truth can be found here: http://en.wikipedia.org/wiki/Vacuously_true#Vacuous_truths_in_mathematics

If you look at http://www.geocities.com/complementarytheory/Real-Line.pdf , you can see that by this model any member (or element) of R set can be simultaneously in both states:

1) As some unique number of the real line (a unique member of R set)

2) As a global scale factor on the entire real-line, which its product is the entire real-line included in itself according to this global scale.

There is no process here but a simultaneous existence of R set on infinitely many unique scale levels of itself.

Because of this self-similarity over scales, we can understand why some segment of the real line can have the magnitude of the entire real-line.

Please understand that we are not talking about some shape of a fractal, but on the infinitely many levels of non-empty elements, which are included in R set.

It is important to stress that there is one and only one magnitude to the real line, which is not affected by its fractal nature.


Any comments?
 
Last edited:
What is an "ultimative fractal" ?

No, wait, what is "ultimative" ? Or, is that German ?
 
1. You've not explained what global scale factor means, just used the words again.
2. if fractals have nothing to do with it why do you keep banging on about them
3. R is an infinite set, that is all youy're saying
4. magnitude has not been defined properly, given your weird views on cardinality and lack of understanding of the usage of words in proper mathematics youy should at least try to explain what you mean, though you will fail almost surely.
 
I think it's easist first to watch a short vidio clip I find these videos very relaxing to watch .. I got to thinking is this being done in the most efficient way? The sand has to be suspended in the water to move it to the outlet ... The faster the water , the more turbulance and the sand stays suspended, so it seems to me the rule of thumb is the hose be aimed towards the outlet at all times .. Many times the workers hit the sand directly which will greatly reduce the water...

Similar threads

Back
Top