Work can be defined as W = F d, where both are vectors and you take the scalar product - F = force able to do work, d = displacement on body at which work was applied. Looking at this definition, it takes the same magnitude of work getting from point A to B as from B to A. The displacement is the same, just in the other direction.
In this case, electric potential energy decreases in going from A to B. This is because external work done = change in potential energy and the fact that negative work must be done. You can make sense of this fact by looking at the force that would be exerted on the positive particle by the electric fields throughout the displacement. A positive charged particle is going to experience a net force to the negative charged particles. In order for an external force to "move" the particle from A to B it (in net) has to be in the opposite direction of this electrostatic force. When ever the displacement is in the opposite direction of the force, it is said to be negative work. The electrostatic force does positive work on the particle equal in magnitude to the external work, assuming energy is not changed by other means like having a different final kinetic energy.
So assume an external force is applied to the particle equal to and opposite in direction to the electrostatic force. In this state, no work is done as there is no displacement (assuming 0 kinetic energy.) Then imagine the external force is weakened for an small time interval so that the particle begins to accelerate to the right. The external force can then be increased again, equal to the electrostatic force having the particle now moving at a constant rate.
At this point, the external force as done some negative work and the electrostatic force as done positive work. In fact, at this point it has done more positive work than the external force has done negative. That is, the particle now has kinetic energy and it is equal to the positive work done - the negative work done.
Now assume it is about to approach point B. The external force must now increase itself for a small time interval to bring the particle to a stop. Once this is done, kinetic energy is decreased again, leaving that energy amount into the negative work done by the external force. In other words, it has taken the kinetic energy out as the other force put it in, in the beginning. So in the end, both forces did equal work, but, work applied = - work of conservative force (the electrostatic force.)
Even though this seems to be a very specific example of what is going on, it is true no matter how the particle is moved from point A to B.
It's also intuitive to think a positive charged particle has more potential when closer to positive charges as they repel each other. The closer they are, the more potential they have to spread away.