Is the set 'V' a vector space?

ElijahRockers
Gold Member
Messages
260
Reaction score
10

Homework Statement



Let V be the set of all ordered pairs of real numbers, with addition being defined as:

(x_1 , x_2 ) + (y_1 , y_2 ) = (x_1 + y_1 , x_2 + y_2 )

and scalar multiplication defined as:

\alpha \circ (x_1 , x_2 ) = (\alpha x_1 , x_2)

Is V a vector space with these operations? Justify your answer.

The Attempt at a Solution



I am thinking yes, because the scalar multiplication rule does not seem to violate any of the 8 axioms for vector spaces, but it seems wrong intuitively.
 
Physics news on Phys.org
What are the axioms defining a vector space with respect to scalar multiplication? Can you confirm each of them? You've probably only ever seen a single example of a vector space (Rn), so your intuition isn't exactly well developed about these things. That's normal, it's important when dealing with algebraic structures to carefully confirm that all necessary conditions are satisfied.
 
Distributivity of scalar multiplication with respect to vector addition   a(u + v) = au + av
Distributivity of scalar multiplication with respect to field addition (a + b)v = av + bv
Compatibility of scalar multiplication with field multiplication a(bv) = (ab)v

These and the multiplicative identity are the only axioms that would involve the altered scalar multiplicative operator. if u = (u1,u2) and v = (v1,v2)

"[a(u+v) = au+av]"
a[(u1,u2) + (v1,v2)] = a(u1+v1, u2+v2) = (au1+av1, u2+v2) = a(u1,u2) + a(v1,v2)
seems to check out

"(a + b)(v1,v2) = a(v1,v2) + b(v1,v2)"
(a+b)(v1,v2) = ((a+b)v1,v2) = (av1+bv1,v2) ≠ (av1, v2) + (bv1,v2) = (av1+bv1, v2+v2)

I suppose this axiom doesn't really check out, because (av1+bv1, v2+v2)≠(av1+bv1,v2) right?
 
indeed the last one doesn't check out, because you would get a(v1,v2)+b(v1,v2). for the v1's it's ok, but you get the undesired 2 times v2.
 
Number Nine said:
What are the axioms defining a vector space with respect to scalar multiplication? Can you confirm each of them? You've probably only ever seen a single example of a vector space (Rn), so your intuition isn't exactly well developed about these things. That's normal, it's important when dealing with algebraic structures to carefully confirm that all necessary conditions are satisfied.

Turns out my intuition was correct. ;p
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top