- #1
Gear300
- 1,213
- 9
This is sort of a simple question.
If there is a point P near a function F(x), then, so long as F(x) is continuous, the shortest distance between P and F(x) would be along a line connecting P and F(x), in which it is perpendicular to the tangent of F(x) at the point of intersection.
Is this statement valid?
If there is a point P near a function F(x), then, so long as F(x) is continuous, the shortest distance between P and F(x) would be along a line connecting P and F(x), in which it is perpendicular to the tangent of F(x) at the point of intersection.
Is this statement valid?