Is the sum of this series correct?

  • Thread starter Thread starter opticaltempest
  • Start date Start date
  • Tags Tags
    Series Sum
opticaltempest
Messages
135
Reaction score
0
I am given the following series and its sum
<br /> \sum\limits_{n = 1}^\infty {\frac{1}{{\left( {2n - 1} \right)^2 }}} = \frac{{\pi ^2 }}{8}<br />
I need to find the sum of this series
<br /> \sum\limits_{n = 3}^\infty {\frac{1}{{\left( {2n - 1} \right)^2 }}} <br />

Is the method I used below this the correct approach? Is there a better or different way?

From the first series where n=1 we have,

<br /> a_n = \frac{1}{{\left( {2n - 1} \right)^2 }}<br />

<br /> = {\rm{\{ 1, 1/9, 1/25, }}...{\rm{\} }}<br />

Therefore I concluded that we can subtract off the first two terms of
the above sequence to get the sum when n starts at 3. Hence,

<br /> \sum\limits_{n = 3}^\infty {\frac{1}{{\left( {2n - 1} \right)^2 }}} = \frac{{\pi ^2 }}{8} - 1 - \frac{1}{9}<br />
 
Physics news on Phys.org
Your reasoning is correct.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top