I Is the uncertainty principle applicable to single slit diffraction?

  • I
  • Thread starter Thread starter greypilgrim
  • Start date Start date
  • Tags Tags
    Diffraction Slit
greypilgrim
Messages
579
Reaction score
44
Hi.

I've seen single slit diffraction being brought up as an example of the uncertainty principle: Narrowing the slit restricts the particles more in one dimension, which means the momentum in this dimension is more uncertain, which results in a more spread-out diffraction pattern.

I've even seen "derivations" of the uncertainty relation like the following:
1709223774039.png


They use the 1st minimum of the pattern to define ##\Delta\vec{p}_x##, and then with ##\sin(\alpha_1)\approx\tan(\alpha_1)## and the de Broglie wavelength successfully arrive at ##\Delta x\cdot\Delta p_x\approx h##.

Well just taking the 1st minimum seems arbitrary. But if I'm not mistaken, a correct derivation of ##\Delta p_x## diverges since ##x^2\sinc^2 (x)## isn't integrable. This of course doesn't contradict the uncertainty principle, but is there a more rigorous way to make sense of it in the case of the single slit?

It's kind of weird that this "spreading out" of the pattern while narrowing the slit isn't reflected in ##\Delta p_x## at all which is always infinite.
 
Last edited:
Physics news on Phys.org
Hi,

Not a real answer, but:

The colleagues have a thread on your subject.

There is also Sheet 24 here

##\ ##
 
greypilgrim said:
This of course doesn't contradict the uncertainty principle, but is there a more rigorous way to make sense of it in the case of the single slit?

It's kind of weird that this "spreading out" of the pattern while narrowing the slit isn't reflected in ##\Delta p_x## at all which is always infinite.
The uncertainty principle is a quick way to justify diffraction, but it doesn't explain the detail. A more detailed explanation is:

When the particle reaches the slit it has effectively the uniform wavefunction of a plain wave. The slit acts like an infinite square well and the wavefunction transforms to a linear combination of momentum eigenstates appropriate to the width of the well. When it emerges from the well, that superposition evolves as a superposition of free particle states. The width of the central band corresponds to the ground state of the well. The narrower the slit, the wider the band. The other bands correspond to the excited states. For a wider slit only the ground state is significant. For a narrow slit, more of the excited energy states become significant.

That's still some way short of a full mathematical treatment. But, it explains more than simply invoking the UP.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top