Artusartos
- 236
- 0
Homework Statement
Let X= \begin{bmatrix} X_1 \\X_2 \end{bmatrix} be bivariate normal N(\begin{pmatrix} \theta \\ \theta \end{pmatrix}, \begin{pmatrix} 1 & u \\ u & \sigma^2 \end{pmatrix}). Let T=aX_1 + (1-a)X_2.
a) Write u in terms of \rho = the correlation coefficient, and \sigma
b) Find the distribution of t
c) Find the value of a that minimized the variance of T.
Homework Equations
The Attempt at a Solution
a) \rho = u/\sigma so u = \rho\sigma
b) T is also normal...
If we write T = aX_1 + (a-1)X_2 = \begin{bmatrix} a & a-1\end{bmatrix}\begin{bmatrix} X_1 \\ X_2 \end{bmatrix}
Let A=\begin{bmatrix} a & a-1\end{bmatrix}
Then E(T)=AE(X)
Var(T) = A*covariance matrix*A'
So the distribution of T is N(E(T), Var(T))
Do you think this is correct?
c) I'm stuck here...
Thanks in advance