I Is there a name for this sort of differential equation?

AI Thread Summary
The differential equation presented, f(z) + 2zf'(z) + f''(z) = 0, does not appear to be classified as a Hermite equation. The suggested general solution involves the probit function, expressed as f(z) = e^{-z^2} (c_1 + c_2 Φ(√3z)). It can be transformed into a Sturm-Liouville form, which is a recognized category of differential equations. This transformation confirms its classification within that framework. The discussion concludes with acknowledgment of the Sturm-Liouville connection.
Gear300
Messages
1,209
Reaction score
9
Is there a name to this sort of differential equation?
$$
f(z) + 2zf'(z) + f''(z) = 0 ~.
$$
I ran into it somewhere and it does not look to be Hermite. I think it has the general solution
$$
f(z) = e^{-z^2} \big( c_1 + c_2 \Phi(\sqrt{3}z) \big)
\quad \textnormal{($\Phi(x)$ is probit function.)}
$$
You might have to correct me on the solution, but is there a name to it?
 
Last edited:
Mathematics news on Phys.org
Gear300 said:
Is there a name to this sort of differential equation?
$$
f(z) + 2zf'(z) + f''(z) = 0 ~.
$$
I ran into it somewhere and it does not look to be Hermite. I think it has the general solution
$$
f(z) = e^{-z^2} \big( c_1 + c_2 \Phi(\sqrt{3}z) \big)
\quad \textnormal{($\Phi(x)$ is probit function.)}
$$
You might have to correct me on the solution, but is there a name to it?
This can be transformed into
##\dfrac{d}{dz} \left ( e^{z^2} \dfrac{df}{dz} \right ) + e^{z^2} f(z) = 0##

This is a Sturm-Louville differential equation.

-Dan
 
  • Like
Likes Euge, Office_Shredder, berkeman and 1 other person
Ah. Thanks.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top