Is There a Trick to Solve x^x^x^x^x...=10?

  • Thread starter Thread starter starfish99
  • Start date Start date
AI Thread Summary
The discussion centers on the convergence of the infinite exponentiation sequence x, x^x, x^x^x, and so on. For values of x less than or equal to e^(1/e) (approximately 1.44467), the sequence converges, while for x greater than this value, it diverges to infinity. The equation x^x^x^x^x...=2 can be solved using a trick that equates the bottom exponent to the entire expression, leading to a valid solution of x=sqrt(2). However, applying the same method to x^x^x^x^x...=10 results in x^10=10, yielding x as the tenth root of 10, which is incorrect because it does not converge to 10. Ultimately, the discussion concludes that not all equations have solutions, particularly when the sequence cannot converge to the specified value.
starfish99
Messages
28
Reaction score
0
In a book of math puzzles Peter Winkler discusses the sequence x, x^x, x^x^x, x^x^x^x and writes about conditions for its divergence. Clearly for x=1 the sequence is 1,and for x=2 it diverges to infinity.

Then he shows that the maximum value of x for the sequence to converge is x=e^(1/e) or
x= 1.44467... At this value the infinite tower of "x" exponents is equal to e (2.7182818..).
For any x larger than e^(1/e), the sequence diverges to infinity.

Mr Winkler later goes on to discuss the equation x^x^x^x^x...=2 (an infinite tower of "x"
exponents=2)
By using the trick that the exponent of the bottom"x" is the same as the whole expression,the equation becomes x^2=2, and x=sqrt(2)=1.414... is the solution.
(This is close to the maximum value for convegence( shown above) 1.44467...

My question(finally):
Suppose you have an equation x^x^x^x^x^x^x...=10 (an infinite tower of "x"=10)
Why can't you use the same trick as we did for x^x^x^x^x^x=2 case.
In this case we would get x^10=10. And the solution is x= the tenth root of 10(x=1.2589..)
Now the tenth root of 10 is clearly the wrong answer because:
1) It is too small . It is smaller than sqrt(2) whose tower conveges to the number 2
2) The maximum value this tower of "x" converges to is 2.71828... at x=e^(1/e)

Why doesn't this trick work for x^x^x^x^x^x...=10 ?
 
Mathematics news on Phys.org


Because there is no x for which the sequence converges to 10? The trick works for small x because we presume that the solution exists, which is not the case here.
 


Thanks hamster. Sometimes you can forget, some equations have no solutions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top