Is there an error in this problem?

  • Thread starter Thread starter madsmh
  • Start date Start date
  • Tags Tags
    Error
madsmh
Messages
32
Reaction score
2
I am currently working on problem 32-15 in Calculus by Spivak, and in question (b)

in the bottom line there is a relation
[\phi_1'(b)\phi_2(b) -\phi_1'(a)\phi_2(a)]+[\phi_1(b)\phi_2'(b)-\phi_1(a)\phi_2'(a)]>0

But I can only get it to work out if

[\phi_1'(b)\phi_2(b) -\phi_1'(a)\phi_2(a)]-[\phi_1(b)\phi_2'(b)-\phi_1(a)\phi_2'(a)]>0

as this would make sense since

\int_a^b \phi_1''(x)\phi_2(x)-\phi_2''(x)\phi_1(x) + \phi_1'(x)\phi_2'(x)-\phi_1'(x)\phi_2'(x) dx = \int_a^b (\phi_1'(x)\phi_2(x))' dx - \int_a^b (\phi_2'(x)\phi_1(x))' dx

which would make it natural to conclude that the relation above is >0, since the above integral has been shown to be >0.

.. Mads
 
Physics news on Phys.org
I hard to guess what's going on here.

What is the problem as stated in the textbook, and where are you stuck?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top