Is this a canonical transformation?

  • Thread starter Thread starter Liquidxlax
  • Start date Start date
  • Tags Tags
    Proof Transform
Liquidxlax
Messages
312
Reaction score
0
Consider the following change of variables in phase space f: maps the reals and is smooth and invertable change of coordinates Q=f(q), q = f-1(Q). Given f, define a change of variables on phase space (q,p) -> (Q,P) by the pair of relations

Pj = (∇f-1)Tjk(f(q))pk

q runs from 1 to n

show that its canonical.
I know that for this to be canonical

(dQi/dqj)(q,p) = (dpj/dPi)(Q,P)

(dQi/dpj)(q,p) = -(dqj/dPi)(Q,P)i'm having a couple problems, is f the generating function that i have to find explicitly?

Can i use the sympletic method such that MJM^T = J

what is the point of the transpose for the (∇f-1)Tjk part for? i thought f had to be symmetric.
 
Physics news on Phys.org
for Pj it can equal

(∇f-1)TjkQpk

=(∇f)T *-1jkqpk

but for that to be true then (∇f-1)Tjk has to be symmetric therefore the transpose dissapears

looking at my notes, i think this is supposed to be the associated point transformation in phase space
 
Last edited:
Guess i can answer my own question... i knew how to do it but i had an error in my notes

[dQ, dP)T = [{dQ/dq, dQ/dp}, {dP/dq, dP/dp}]*[dq, dp] = Mij*[dq, dp]

to prove its a canonical transformation

MJMT = J where J = [{0,I},{-I,0}] and T represents the transposeIf i do the matrix multiplication and say:now i will let {a,b} where a and b are some arbitrary coordinates be the poisson brackets

MJMT = [(0,{Q,P}), (-{Q,P},0)]

It is known that {P,P} = 0 = {Q,Q} and {Q,P} = δij

Using the following vvvv
n7n5k.png


and there you have it
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top