Is This a Poisson or Binomial Random Variable?

  • Thread starter Thread starter lordy12
  • Start date Start date
  • Tags Tags
    Probability
lordy12
Messages
36
Reaction score
0
1. http://d.imagehost.org/t/0866/problem1.jpg



Homework Equations





3. For the Poisson random variables I get ((lamda)^x)/((e^2lambda)*x!) when y =1. Is this a Poisson Random variable? Also, when y = 0, I get ((lamda)^x)/((e^lambda)*x!) - ((lamda)^x)/((e^2lambda)*x!) I cannot get the binomial. I don't know how to show that this is Binomial as x is in the range from 1...infinity.

For part 1 I used the fact that P(X=x and Y=y) = P(X|Y)P(Y)
and P(Y=y) = sum(1 to x)P(X=x and Y=y) = 1, so P(X=x|Y=y)(P(y) = P(X=x and Y=y)
Reply With Quote
 
Last edited by a moderator:
Physics news on Phys.org
http://d.imagehost.org/view/0752/problem1.jpg
 
Last edited by a moderator:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top