mitch987
- 7
- 0
Help!? Linear algebra proof
Suppose that u,v,w are geometric vectors such that u\neq0,
u\cdotv=u\cdotw and uxv=uxw
Prove that v=w
So far, I'm not sure if this is correct
u\cdotv=u\cdotw
|u||v|cos\theta=|u||w|cos\theta
|v|=|u|uxv=uxw
|u||v|sin\theta\hat{(u\times v)}=|u||w|sin\theta\hat{(u\times w)}
|w|sin\theta\hat{(u\times v)}=|w|sin\theta\hat{(u\times w)}
\hat{(u\times v)}=\hat{(u\times w)}
therefore, v=w
Homework Statement
Suppose that u,v,w are geometric vectors such that u\neq0,
u\cdotv=u\cdotw and uxv=uxw
Prove that v=w
Homework Equations
The Attempt at a Solution
So far, I'm not sure if this is correct
u\cdotv=u\cdotw
|u||v|cos\theta=|u||w|cos\theta
|v|=|u|uxv=uxw
|u||v|sin\theta\hat{(u\times v)}=|u||w|sin\theta\hat{(u\times w)}
|w|sin\theta\hat{(u\times v)}=|w|sin\theta\hat{(u\times w)}
\hat{(u\times v)}=\hat{(u\times w)}
therefore, v=w