Is u Algebraic Over K if u^2 is Algebraic Over F?

  • Thread starter Thread starter jeffreydk
  • Start date Start date
  • Tags Tags
    Extension Field
jeffreydk
Messages
133
Reaction score
0
I'm currently trying to prove that (for a field extension K of the field F) if u\in K and u^2 is algebraic over F then u is algebraic over K.

I thought of trying to prove it as contrapositive but that got me nowhere--it seems so simple but I don't know what to use for this. Any help with this would be greatly appreciated.
 
Physics news on Phys.org
Well clearly u is algebraic over K (it is an elemnt of K) so I'm guessing you mean to say that u is algebraic over F. Well if u^2 is algebraic over F then let f be a polynomial in F[x] such that f(u^2)=0. I don't want to give it away but if you think about the polynomial f(x^2)...
 
Oh wow yea, ok it's pretty clear. I think I was complicating things. Thanks.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top