Is U(x,y) = max { |x1-y1|, |x2-y2|} a Valid Metric?

  • Thread starter Thread starter math-chick_41
  • Start date Start date
  • Tags Tags
    Metric
math-chick_41
Messages
34
Reaction score
0
I need help on how to show something is a metric.
U: R2 x R2 ----> R where U(x,y) = max { |x1-y1|,|x2-y2|}
I can do all the properties except for the dreaded triangle inequality property. help me out please, thanks
 
Physics news on Phys.org
What are your ideas so far?
Here's the basic start, let a=|x1-y1|,b=|x_2-y2|,c=|x3-y3|. (a,b and c are three arbitrary non-negative numbers).

To show:
max(a,b)<=max(a,c)+max(b,c)

Looks like, if it isn't obvious, you can always exhaust different cases.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top