Is V a Subspace of P2?

  • Context: MHB 
  • Thread starter Thread starter rayne1
  • Start date Start date
  • Tags Tags
    Subspace
Click For Summary
SUMMARY

The discussion confirms that the set V, defined as V = {({x}^{2}-1)p(x) | p(x) ∈ P2}, is not a subspace of P2 due to the presence of elements like x^4 - x^2, which exceed the degree limit of P2. However, V can still be analyzed as a subspace of larger vector spaces such as R[x] or F[x], depending on the underlying field. The dimension of V is at most 5, and if the polynomials {x^2 - 1, x^3 - x, x^4 - x^2} are linearly independent, then V has a dimension of at least 3.

PREREQUISITES
  • Understanding of vector spaces and subspaces
  • Familiarity with polynomial degrees and operations
  • Knowledge of linear independence in vector spaces
  • Basic concepts of finite-dimensional spaces
NEXT STEPS
  • Study the properties of polynomial vector spaces, specifically R[x] and F[x]
  • Learn about the axioms defining vector spaces and subspaces
  • Investigate the concept of linear independence in greater detail
  • Explore the implications of the axiom of choice in vector space theory
USEFUL FOR

Mathematicians, students of linear algebra, and anyone studying vector spaces and polynomial functions will benefit from this discussion.

rayne1
Messages
32
Reaction score
0
$$V = \{({x}^{2}-1)p(x) | p(x) \in {P}_{2}\}$$ show that V is a subspace of ${P}_{2}$I tried:
$({x}^{2}-1)(0) = 0$ so 0 is in ${P}_{2}$ (axiom 1 is satisfied). If p(x) and q(x) are in ${P}_{2}$, then $({x}^{2}-1)p(x) + ({x}^{2}-1)q(x) = ({x}^{2}-1)(p(x)+q(x))$ and since $p(x)+q(x) \in {P}_{2}$, axiom 2 is satisfied. Finally, if $p(x) \in {P}_{2}$ then $ap(x)$ (a is a scalar) is also in ${P}_{2}$. Since all three axioms are met, V is a subspace of ${P}_{2}.$

Is what I did correct?
 
Last edited:
Physics news on Phys.org
Well you showed it is a subspace of *something* but it's *not* a subspace of $P_2$, since we have:

$x^2 \in P_2$, but certainly $x^4 - x^2 = (x^2 - 1)x^2 \not\in P_2$, since it has degree $4$.
 
Deveno said:
Well you showed it is a subspace of *something* but it's *not* a subspace of $P_2$, since we have:

$x^2 \in P_2$, but certainly $x^4 - x^2 = (x^2 - 1)x^2 \not\in P_2$, since it has degree $4$.

Ok, then is it still possible to find a basis and dimension of V if it is not a subspace of ${P}_{2}$?
 
Sure. If your underlying field is $\Bbb R$, then $V$ would be a subspace of $\Bbb R[x]$. Otherwise, if its some *other* field $F$, then $V$ is a subspace of $F[x]$.

But a set need not be a subspace of some *other* vector space in order to be a vector space-it's just that we have fewer axioms to check if we're checking for a subspace (only 3 conditions), instead of the 8,9 or 10 axioms you often see listed in textbooks.

EVERY VECTOR SPACE HAS A BASIS.

I cannot stress enough the importance of this. The proof involves the axiom of choice for "arbitrary" vector spaces, but for finite-dimensional spaces, it's practically "true by definition" (since finite-dimensional *means* we have a finite basis).

Of course, $\Bbb R[x]$ (or $F[x]$ for that matter) is not finite-dimensional. But the subspace of polynomials of degree at most $n$ (for any positive integer $n$) *is* finite-dimensional, with dimension $n+1$ (so $P_2$ has dimension 3, one possible basis is $\{1,x,x^2\}$).

In your case, "your" $V$ has dimension at most $5$ (it is a subspace of $P_4$). If $\{x^2 - 1, x^3 - x,x^4 - x^2\}$ are linearly independent over your field, then $V$ has dimension at least $3$ (can you see this?).

So you have two cases (perhaps) to rule out (if you prove my statement above)-can you do this?
 

Similar threads

Replies
48
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K