Ninty64
- 45
- 0
Homework Statement
Let V be a vector space over the field F and consider F to be a vector space over F in dimension one. Let f \in L(V,F), f \neq \vec{0}_{V\rightarrow F}. Prove that V/Ker(f) is isomorphic to F as a vector space.
Homework Equations
L(V,F) is the set of all linear maps from V to F
Dim(V) = Rank(f) = Nullity(f)
The Attempt at a Solution
I tried to come up with a proof. There is no solution to the problem and I'm unsure of my answer. I also want to get better at proving things, so any responses are appreciated!
I know that two vector spaces are isomorphic if there exists a linear transformation between them that is injective and surjective. But I also know that they are isomorphic if Dim(V/Ker(f)) = Dim(F), which I tried to prove.
By definition, Dim(F)=1
Assume Dim(V) = n
Let \left\{\vec{v}_1,\vec{v}_2,...,\vec{v}_n\right\} be a basis for V
Let \left\{\vec{x}\right\} be a basis for F
Then there exist unique f(\vec{v}_i)=\vec{w}_i such that
f(c_1\vec{v}_1+c_2\vec{v}_2 + ... + c_n\vec{v}_n) = c_1\vec{w}_1 + ... + c_n\vec{w}_n with some c_i \neq 0 since f \neq \vec{0}_{V\rightarrow F}, where c_1,c_2,...,c_n \in F
By definition, c_1\vec{w}_1+...+c_n\vec{w}_n \in Span(\vec{x})
\Rightarrow ax = c_1\vec{w}_1+...+c_n\vec{w}_n \neq \vec{0}, a \in F
\Rightarrow x = a^{-1}c_1\vec{w}_1 + ... + a^{-1}c_n\vec{w}_n since a \neq 0
Therefore, Span({\vec{w}_1,\vec{w}_2,...,\vec{w}_n}) = F
By the Rank Nullity Theorem,
Dim(V) = Rank(f) + Nullity(f)
\Rightarrow n = 1 + Nullity(f) \Rightarrow Nullity(f)=n-1
Let \left\{\vec{y}_1,\vec{y}_2,...,\vec{y}_{n-1}\right\} be a basis for Ker(f)
Since ker(f) is a subspace of V, by definition, then
Span(\left\{ \vec{y}_1,\vec{y}_2,...,\vec{y}_{n-1}\right\} ) \subseteq Span(\left\{ \vec{v}_1,\vec{v}_2,...,\vec{v}_{n}\right\} )
\Rightarrow \vec{y}_1 \in Span(\left\{ \vec{v}_1,\vec{v}_2,...,\vec{v}_{n}\right\} )
\Rightarrow \vec{y}_1 \cup \left\{\vec{v}_1,\vec{v}_2,...,\vec{v}_{n}\right\} is linearly dependent
\Rightarrow there exists some \vec{v}_i such that it is a linear combination of the preceding vectors (let \vec{v}_i = \vec{v}_n by reordering)
Thus, \vec{v}_n \in Span(\left\{ \vec{y}_1, \vec{v}_1,\vec{v}_2,...,\vec{v}_{n-1} \right\} )
Since \left\{ \vec{y}_1, ..., \vec{y}_{n-1} \right\} is linearly independent, we can continue with this method until we get
Span(\left\{ \vec{y}_1, \vec{y}_2, ..., \vec{y}_{n-1}, \vec{v} \right\} ) = V where \vec{v} \in \left\{ \vec{v}_1, \vec{v}_2, ... , \vec{v}_n \right\}
Let \vec{z} \in V/Ker(f)
\Rightarrow \vec{z} = \left[ b_1\vec{y}_1 + b_2\vec{y}_2 + ... + b_{n-1}\vec{y}_{n-1} + b_n\vec{v} \right]_{Ker(f)} = [b_n\vec{v}]_{Ker(f)}
Thus, \vec{v} spans V/Ker(f)
\Rightarrow Dim(V/Ker(f))=1
Thus, V/Ker(f) and F are isomorphic.