Isomorphism of the Dihedral group

blahblah8724
Messages
31
Reaction score
0
We're doing isomorphisms and I was just wondering, is the dihedral group D_{12} isomorphic to the group of even permutations A_4?
 
Physics news on Phys.org
Let's find out. How many elements of order 2 are there in A_4 and D_{12}??
 
OR...

D12 contains 2 elements of order 6 (what are they?). does A4 have any elements of order 6?
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
4
Views
2K
Replies
1
Views
2K
Replies
9
Views
12K
Replies
1
Views
2K
Replies
2
Views
2K
Replies
7
Views
2K
Back
Top