omoplata
- 327
- 2
From page 46 of "Modern Quantum Mechanics, revised edition", by J.J. Sakurai.
In equation (1.6.24),
\left[\mathbf{x}, \mathcal{T}(d\mathbf{x'}) \right] = d \mathbf{x'} \mid \mathbf{x'} + d \mathbf{x'} \rangle \approx d \mathbf{x'} \mid \mathbf{x'} \rangle
It is written: "where the error made in writing the last line of (1.6.24) is of second order in d \mathbf{x'}". How does that happen? From a Taylor expansion of \mid \mathbf{x'} + d \mathbf{x'} \rangle ? If so, how do you Taylor expand a ket?
In equation (1.6.24),
\left[\mathbf{x}, \mathcal{T}(d\mathbf{x'}) \right] = d \mathbf{x'} \mid \mathbf{x'} + d \mathbf{x'} \rangle \approx d \mathbf{x'} \mid \mathbf{x'} \rangle
It is written: "where the error made in writing the last line of (1.6.24) is of second order in d \mathbf{x'}". How does that happen? From a Taylor expansion of \mid \mathbf{x'} + d \mathbf{x'} \rangle ? If so, how do you Taylor expand a ket?
Last edited: