AxiomOfChoice
- 531
- 1
Suppose I am changing variables from (x,y) to (s,t), where
<br /> \begin{align*}<br /> s & = \frac 12 (x+y),\\<br /> t & = y - x<br /> \end{align*}<br />
According to Wikipedia, if I want to see how the measure dx dy changes, I need to compute the Jacobian matrix J associated with this variable transformation and take its determinant. It will then follow that dx dy = \det J ds dt. The Jacobian matrix takes the form
<br /> \begin{bmatrix}<br /> \partial x / \partial s & \partial x / \partial t \\<br /> \partial y / \partial s & \partial y / \partial t<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> 1 & -1/2 \\<br /> 1 & 1/2<br /> \end{bmatrix}<br />
Is it just coincidence that the matrix J is identical to the matrix of the transformation; i.e., the matrix that shows up in the identity
<br /> \begin{bmatrix}<br /> x \\ y<br /> \end{bmatrix} = <br /> \begin{bmatrix}<br /> 1 & -1/2 \\<br /> 1 & 1/2<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> s \\ t<br /> \end{bmatrix}<br />
<br /> \begin{align*}<br /> s & = \frac 12 (x+y),\\<br /> t & = y - x<br /> \end{align*}<br />
According to Wikipedia, if I want to see how the measure dx dy changes, I need to compute the Jacobian matrix J associated with this variable transformation and take its determinant. It will then follow that dx dy = \det J ds dt. The Jacobian matrix takes the form
<br /> \begin{bmatrix}<br /> \partial x / \partial s & \partial x / \partial t \\<br /> \partial y / \partial s & \partial y / \partial t<br /> \end{bmatrix}<br /> =<br /> \begin{bmatrix}<br /> 1 & -1/2 \\<br /> 1 & 1/2<br /> \end{bmatrix}<br />
Is it just coincidence that the matrix J is identical to the matrix of the transformation; i.e., the matrix that shows up in the identity
<br /> \begin{bmatrix}<br /> x \\ y<br /> \end{bmatrix} = <br /> \begin{bmatrix}<br /> 1 & -1/2 \\<br /> 1 & 1/2<br /> \end{bmatrix}<br /> \begin{bmatrix}<br /> s \\ t<br /> \end{bmatrix}<br />