Jaden Harris' Velocity Ques. at Yahoo Answers

Click For Summary
SUMMARY

This discussion focuses on the concepts of average and instantaneous velocity in the context of a ball thrown vertically upward with a given height function, y(t) = 72t - 16t². The average velocity over the interval from 4 to 4+h seconds is calculated using the difference quotient, resulting in the correct answer being option e) Avg. Vel. = -(56 + 16h) ft/sec. For instantaneous velocity at t = 4 seconds, the limit of the average velocity as h approaches 0 yields the correct answer a) Instantaneous Vel. = -56 ft/sec.

PREREQUISITES
  • Understanding of calculus concepts such as limits and derivatives
  • Familiarity with the difference quotient for calculating average velocity
  • Knowledge of quadratic functions and their properties
  • Basic understanding of physics principles related to motion
NEXT STEPS
  • Study the concept of limits in calculus, focusing on their application in finding instantaneous rates of change
  • Learn how to derive velocity functions from position functions in physics
  • Explore the relationship between secant and tangent lines in calculus
  • Practice solving problems involving average and instantaneous velocity using different functions
USEFUL FOR

Students studying calculus, physics enthusiasts, and educators looking to clarify the concepts of average and instantaneous velocity in motion problems.

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Average Velocity and instantaneous velocity?

I am having so much trouble with this question, and I have no idea why. I know that average velocity is based upon a secant and is basically a slope formula. Instantaneous velocity is based upon a tangent and is basically a point. However, this question is confusing me, maybe I'm staying up too late. Help?

When a ball is thrown vertically upward into the air with a velocity of 72 ft/sec its height, y(t), in feet after t seconds is given by y(t) = 72t - 16t^2. Find the average velocity of the ball over the interval from 4 to 4+h seconds, h does not = 0.
a) Avg. Vel.= -(57-16h) ft/sec
b)Avg. Vel.= -(57+h) ft/sec
c) Avg. Vel.= -(57+16h) ft/sec
d) Avg. Vel.= -(57-h) ft/sec
e) Avg. Vel.= -(56+16h) ft/sec
f) Avg. Vel.= -(56-16h) ft/sec

Then it proceeds to ask:
Find the instantaneous velocity of the ball after 4 seconds:
a) Instantaneous Vel. =-56 ft/sec
b) Instantaneous Vel. =-55 ft/sec
c) Instantaneous Vel. =-53 ft/sec
d) Instantaneous Vel. =-54 ft/sec
e) Instantaneous Vel. =-57 ft/sec

I have posted a link there to this topic so the OP can see my work.
 
Physics news on Phys.org
Hello Jaden Harris,

For the first part of the question, we need to compute the difference quotient:

$$\frac{\Delta y}{\Delta t}=\frac{y(4+h)-y(h)}{h}\,\frac{\text{ft}}{\text{s}}$$

So, we find:

$$y(4+h)-y(h)=\left(72(4+h)-16(4+h)^2 \right)-\left(72(4)-16(4)^2 \right)=$$

$$72(4)+72(h)-16\left(16+8h+h^2 \right)-72(4)+16(16)=72h-128h-16h^2=-8h(7+2h)$$

Hence:

$$\frac{\Delta y}{\Delta t}=\frac{-8h(7+2h)}{h}\,\frac{\text{ft}}{\text{s}}=-8(7+2h)\,\frac{\text{ft}}{\text{s}}=-(56+16h)\,\frac{\text{ft}}{\text{s}}$$

Thus, e) is the correct answer.

For the second part of the question, we wish to evaluate the limit:

$$y'(4)\equiv\lim_{h\to0}-(56+16h)\,\frac{\text{ft}}{\text{s}}=-56\,\frac{\text{ft}}{\text{s}}$$

Thus, a) is the correct answer.
 

Similar threads

Replies
1
Views
5K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 19 ·
Replies
19
Views
9K
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
14
Views
2K