MHB Jaden Harris' Velocity Ques. at Yahoo Answers

AI Thread Summary
The discussion revolves around understanding average and instantaneous velocity in the context of a ball thrown vertically upward. The average velocity over the interval from 4 to 4+h seconds is calculated using the difference quotient, leading to the conclusion that the correct answer is -(56+16h) ft/sec. For instantaneous velocity after 4 seconds, the limit calculation results in -56 ft/sec as the correct answer. The user expresses confusion about the concepts but receives clarification through detailed calculations. The thread effectively addresses the mathematical approach to solving the problem.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Average Velocity and instantaneous velocity?

I am having so much trouble with this question, and I have no idea why. I know that average velocity is based upon a secant and is basically a slope formula. Instantaneous velocity is based upon a tangent and is basically a point. However, this question is confusing me, maybe I'm staying up too late. Help?

When a ball is thrown vertically upward into the air with a velocity of 72 ft/sec its height, y(t), in feet after t seconds is given by y(t) = 72t - 16t^2. Find the average velocity of the ball over the interval from 4 to 4+h seconds, h does not = 0.
a) Avg. Vel.= -(57-16h) ft/sec
b)Avg. Vel.= -(57+h) ft/sec
c) Avg. Vel.= -(57+16h) ft/sec
d) Avg. Vel.= -(57-h) ft/sec
e) Avg. Vel.= -(56+16h) ft/sec
f) Avg. Vel.= -(56-16h) ft/sec

Then it proceeds to ask:
Find the instantaneous velocity of the ball after 4 seconds:
a) Instantaneous Vel. =-56 ft/sec
b) Instantaneous Vel. =-55 ft/sec
c) Instantaneous Vel. =-53 ft/sec
d) Instantaneous Vel. =-54 ft/sec
e) Instantaneous Vel. =-57 ft/sec

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Jaden Harris,

For the first part of the question, we need to compute the difference quotient:

$$\frac{\Delta y}{\Delta t}=\frac{y(4+h)-y(h)}{h}\,\frac{\text{ft}}{\text{s}}$$

So, we find:

$$y(4+h)-y(h)=\left(72(4+h)-16(4+h)^2 \right)-\left(72(4)-16(4)^2 \right)=$$

$$72(4)+72(h)-16\left(16+8h+h^2 \right)-72(4)+16(16)=72h-128h-16h^2=-8h(7+2h)$$

Hence:

$$\frac{\Delta y}{\Delta t}=\frac{-8h(7+2h)}{h}\,\frac{\text{ft}}{\text{s}}=-8(7+2h)\,\frac{\text{ft}}{\text{s}}=-(56+16h)\,\frac{\text{ft}}{\text{s}}$$

Thus, e) is the correct answer.

For the second part of the question, we wish to evaluate the limit:

$$y'(4)\equiv\lim_{h\to0}-(56+16h)\,\frac{\text{ft}}{\text{s}}=-56\,\frac{\text{ft}}{\text{s}}$$

Thus, a) is the correct answer.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top