John Nash, Newton and F. Lee Baily walk into a bar.

  • Thread starter Thread starter Rlafrog
  • Start date Start date
  • Tags Tags
    Newton
AI Thread Summary
The discussion centers on the intersection of physics, mathematics, and law, prompted by a hypothetical legal scenario involving a client accused of stabbing someone with a pencil point. The conversation explores whether a single point can exist in the real world when shared by two solid objects, specifically an olive and a toothpick, despite their distinct coordinates in three-dimensional space. Participants reference Newton's principles and Heisenberg's Uncertainty Principle to argue that precise points cannot be determined in nature, raising questions about the implications of this concept in legal contexts. The original poster seeks literature or references that address these intersections, emphasizing the need for clarity on how these theoretical frameworks apply to real-world legal situations. The discussion concludes without a definitive answer, highlighting the complexity of the topic.
Rlafrog
Messages
1
Reaction score
0
I am (relatively) new to your forum and do not know where to post my question. I am kinda well-read in Physics and Math, but very not educated or trained in either. I am personally interested in the fuzzy area where Math, Physics and (patent) Law cross paths.

The Problem:

"I need help gentlemen." F. Lee Bailey begins, "My client is accused of stabbing someone with the point of a pencil." "Easy defense," states Nash, "...a point can't live in the real world." "Not so, Johnny boy!" replies Newton. "Don't play games with me, Issac" replies Nash. "I'd like to see you prove it." At which point, Newton pulls an Olive (O) from his Martini, sets it on the bar, pokes it gently with a toothpick (T) and sends it rolling across the surface and into Nash's lap.

If the Olive lives in the world of O(x,y,z) and the toothpick lives in the world of T(x,y,z), and they both live in the Bar world of B(x,y,z); Then, ...when Newton pokes the olive with the tooth pick, a force of F is transmitted from his hand to single a point of the toothpick, T(x,y,z), where F acts upon the olive (O) at the single point of O(x,y,z) where this single and specific point-of-contact determines the vector of the force acting upon the olive and causes the olive to rotate and translate in a specific direction into Nash's lap. (?)

The Question:

Can a single, one-dimension point live in the real world if it is shared by two solid bodies that live in the real world, where T(x,y,z) is-not-equal-to O(x,y,z) (?), but T(x,y,z) is-the-very-same point-as O(x,y,z) ?

I (generally) understand the Physics and Math of this question. I would be very interested to learn how the answer translates (pun intended) to the legal world. I would appreciate it if someone could point me to Math, Physics or Law literature/references that may discuss this notion or one similar to it.
 
Physics news on Phys.org
What exactly are these different "worlds"?
 
The "worlds" are the three dimensional euclidian spaces that occupy Olive and the toothpick. Unfortunately for Newton, Heisenbergs Uncertainty Principle says that not exact place is posible to determine, therefore events cannot happen in exactly one point in nature.
 
And with that, the thread is closed.
 
Similar to the 2024 thread, here I start the 2025 thread. As always it is getting increasingly difficult to predict, so I will make a list based on other article predictions. You can also leave your prediction here. Here are the predictions of 2024 that did not make it: Peter Shor, David Deutsch and all the rest of the quantum computing community (various sources) Pablo Jarrillo Herrero, Allan McDonald and Rafi Bistritzer for magic angle in twisted graphene (various sources) Christoph...
Thread 'My experience as a hostage'
I believe it was the summer of 2001 that I made a trip to Peru for my work. I was a private contractor doing automation engineering and programming for various companies, including Frito Lay. Frito had purchased a snack food plant near Lima, Peru, and sent me down to oversee the upgrades to the systems and the startup. Peru was still suffering the ills of a recent civil war and I knew it was dicey, but the money was too good to pass up. It was a long trip to Lima; about 14 hours of airtime...
Back
Top