Joint probability density function

kasse
Messages
383
Reaction score
1
Let X, Y, and Z have the joint probability density function

f(x, y, z) = kx(y^2)z, for x>0, y<1, 0<z<2

find k


\int_{0}^{2}\int_{- \infty}^{1}\int_{0}^{\infty}kxy^2z dx dy dz

This integral should equal 1. Is my procedure correct so far? I don't manage to solve the integral...
 
Physics news on Phys.org
Well, that should be correct. There is going to be an obvious problem, however. That integral does not exist. If you have positive powers of variables, you cannot have infinite ranges for them. The probability distribution given, for that range of variables, is impossible.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top