OhNoYaDidn't
- 25
- 0
I am given the following set of 4x4 matrices. How can i justify that they form a basis for the Lie Algebra of the group SO(4)? I know that they must be real matrices, and AA^{T}=\mathbb{I}, and the detA = +-1. Do i show that the matrices are linearly independent, verify these properties, and so they are a basis? Why are they 6 elements?
<br /> _{A_1}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 1 & 0 \\<br /> 0& -1 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> ,\\<br /> \<br /> _{A_2}=\begin{pmatrix}<br /> 0 &0 &-1 &0 \\<br /> 0 & 0 & 0 & 0 \\<br /> 1& 0 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{A_3}=\begin{pmatrix}<br /> 0 &-1 &0 &0 \\<br /> 1 & 0 & 0 & 0 \\<br /> 0& 0 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> \\<br /> _{B_1}=\begin{pmatrix}<br /> 0 &0 &0 &-1 \\<br /> 0 & 0 & 0 & 0 \\<br /> 0& 0 &0 &0 \\<br /> 1& 0& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{B_2}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 0 & -1 \\<br /> 0& 0 &0 &0 \\<br /> 0& 1& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{B_3}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 0 & 0 \\<br /> 0& 0 &0 &1 \\<br /> 0& 0& -1 & 0<br /> \end{pmatrix}<br /> <br />
<br /> _{A_1}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 1 & 0 \\<br /> 0& -1 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> ,\\<br /> \<br /> _{A_2}=\begin{pmatrix}<br /> 0 &0 &-1 &0 \\<br /> 0 & 0 & 0 & 0 \\<br /> 1& 0 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{A_3}=\begin{pmatrix}<br /> 0 &-1 &0 &0 \\<br /> 1 & 0 & 0 & 0 \\<br /> 0& 0 &0 &0 \\<br /> 0& 0& 0 & 0<br /> \end{pmatrix}<br /> \\<br /> _{B_1}=\begin{pmatrix}<br /> 0 &0 &0 &-1 \\<br /> 0 & 0 & 0 & 0 \\<br /> 0& 0 &0 &0 \\<br /> 1& 0& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{B_2}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 0 & -1 \\<br /> 0& 0 &0 &0 \\<br /> 0& 1& 0 & 0<br /> \end{pmatrix}<br /> <br /> ,\\<br /> <br /> _{B_3}=\begin{pmatrix}<br /> 0 &0 &0 &0 \\<br /> 0 & 0 & 0 & 0 \\<br /> 0& 0 &0 &1 \\<br /> 0& 0& -1 & 0<br /> \end{pmatrix}<br /> <br />