MHB K-algebras, endomorphisms and k-linear mappings

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
The discussion revolves around verifying that any endomorphism of an A-module M is a k-linear mapping, as stated in an exercise from "Introduction to Ring Theory" by P. M. Cohn. The argument presented involves defining an endomorphism as a mapping that respects the additive group structure and the action of A on M. A key point is identifying elements in the field k with elements in the algebra A, allowing the conclusion that the endomorphism satisfies the k-linearity condition. A critique suggests adding more detail to the argument, specifically emphasizing the use of the distributive property and the homomorphism property of the mapping. Overall, the discussion confirms the validity of the argument with some recommendations for clarity.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)

In Chapter 2: Linear Algebras and Artinian Rings Exercise 2.1 (1) reads as follows:"Let A be a k-algebra, where k is a field.

Given an A-module M, verify that any endomorphism of M as an A-module is a k-linear mapping."

My thinking on this follows.I would very much appreciate it if someone critiques my argument … and hopefully confirms it is OK ...
Consider $$A$$ to be a right $$A$$-module where the action of $$A$$ on $$M$$ is denoted as $$xa$$ where $$a \in A$$ and $$x \in M$$

Now an endomorphism of $$M$$ as an $$A$$-module is defined as a mapping $$f \ : \ M \to M$$ such that $$f$$ is a homomorphism of the additive groups and further, that:

$$(xf)a =(xa)f$$ for all $$x \in M, a \in A$$Now, … … if we identify any element $$a$$ in the
field $$k$$ with the element $$a.1$$ in the algebra A then we can write:

$$(xf)a =(xa)f$$ for all $$x \in M, a \in k$$

and so $$f$$ is then a $$k$$-linear mapping.

Can someone please confirm that the argument above is valid?

Peter
 
Physics news on Phys.org
Peter said:
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)

In Chapter 2: Linear Algebras and Artinian Rings Exercise 2.1 (1) reads as follows:"Let A be a k-algebra, where k is a field.

Given an A-module M, verify that any endomorphism of M as an A-module is a k-linear mapping."

My thinking on this follows.I would very much appreciate it if someone critiques my argument … and hopefully confirms it is OK ...
Consider $$A$$ to be a right $$A$$-module where the action of $$A$$ on $$M$$ is denoted as $$xa$$ where $$a \in A$$ and $$x \in M$$

Now an endomorphism of $$M$$ as an $$A$$-module is defined as a mapping $$f \ : \ M \to M$$ such that $$f$$ is a homomorphism of the additive groups and further, that:

$$(xf)a =(xa)f$$ for all $$x \in M, a \in A$$Now, … … if we identify any element $$a$$ in the
field $$k$$ with the element $$a.1$$ in the algebra A then we can write:

$$(xf)a =(xa)f$$ for all $$x \in M, a \in k$$

and so $$f$$ is then a $$k$$-linear mapping.

Can someone please confirm that the argument above is valid?

Peter

I think you should put in more detail in your argument that $(xf)a = (xa)f$ for all $x\in M$ and $a\in k$. This is how I would argue the last part:

Take $x\in M$ and $a\in k$. Then

$\displaystyle (xf)a = (xf)(a\cdot 1) = (x(a\cdot 1))f = (xa)f$.

The first and third equalities follows from the distributive property and the middle equality follows from the $A$-homomorphism property of $f$.
 
Euge said:
I think you should put in more detail in your argument that $(xf)a = (xa)f$ for all $x\in M$ and $a\in k$. This is how I would argue the last part:

Take $x\in M$ and $a\in k$. Then

$\displaystyle (xf)a = (xf)(a\cdot 1) = (x(a\cdot 1))f = (xa)f$.

The first and third equalities follows from the distributive property and the middle equality follows from the $A$-homomorphism property of $f$.
Thanks for the critique, Euge ... Most helpful to me ...

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
870
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
934
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K