Rael
- 6
- 0
Hi folks, my problem is the following one:
Kepler stated that orbits of planets are elliptic. Everytnig's well since Newton obtained the same results, with his formula for gravity
F = G(mM)/r^2
Now, i tried to write the Lagrangian of the system (L = K-U, K is cinetic energy, U is potential energy) in polar coordinates which (hopefully without errors) should be defined as follows:
L = \frac{1}{2}m((\dot{r})^2 + (r\dot{\theta})^2) + G(mM)/r
where \dot{r}^ is radial velocity, \dot{\theta}^ is angular velocity, r is the distance between the two bodies, one of them is for simplicity considered being still in the origin.
now deriving the differential equations of motion using d(\partial{L} / \partial{\dot{x}} )/dt = \partial{L}/\partial{x}
we have the following equations :
\ddot{\theta} = -2\dot{\theta}\dot{r}/r
\ddot{r} = r(\dot{\theta})^2 - MG/r^2
\ddot{r} is the radial acceleration, \ddot{\theta} is angular acceleration, M is the mass of the body fixed at the origin.
Now, the equations are by no way linear and easily solvable... and can describe a very rich variety of orbital behaviours, not only the steady Kepler's ellipse (things got even worse when i derived the equations considering the mass M not being fixed but free to move).
Is Kepler's first law an approximation ?? or it's exact ?
Kepler stated that orbits of planets are elliptic. Everytnig's well since Newton obtained the same results, with his formula for gravity
F = G(mM)/r^2
Now, i tried to write the Lagrangian of the system (L = K-U, K is cinetic energy, U is potential energy) in polar coordinates which (hopefully without errors) should be defined as follows:
L = \frac{1}{2}m((\dot{r})^2 + (r\dot{\theta})^2) + G(mM)/r
where \dot{r}^ is radial velocity, \dot{\theta}^ is angular velocity, r is the distance between the two bodies, one of them is for simplicity considered being still in the origin.
now deriving the differential equations of motion using d(\partial{L} / \partial{\dot{x}} )/dt = \partial{L}/\partial{x}
we have the following equations :
\ddot{\theta} = -2\dot{\theta}\dot{r}/r
\ddot{r} = r(\dot{\theta})^2 - MG/r^2
\ddot{r} is the radial acceleration, \ddot{\theta} is angular acceleration, M is the mass of the body fixed at the origin.
Now, the equations are by no way linear and easily solvable... and can describe a very rich variety of orbital behaviours, not only the steady Kepler's ellipse (things got even worse when i derived the equations considering the mass M not being fixed but free to move).
Is Kepler's first law an approximation ?? or it's exact ?
Last edited: