Ket Notation - Effects of the Projection Operator

Questioneer
Messages
5
Reaction score
0
Ket Notation -- Effects of the Projection Operator

Homework Statement


From Sakurai's Modern Quantum Mechanics (Revised Edition), it is just deriving equation 1.3.12.


Homework Equations


\begin{eqnarray*}\langle \alpha |\cdot (\sum_{a'}^N |a'\rangle \langle a'|) \cdot|\alpha \rangle \end{eqnarray*}

The Attempt at a Solution


The summation can be moved to the left, so everything is being summed from a' to N, but does an alpha bra inner product with a' (or <α|a'>) does the sum of this from all a' to N equal Ʃ<a'|α>? maybe this is simple and I just can't see it?
 
Physics news on Phys.org


Check (1.2.12), which is a fundamental property of the inner product. That property holds even when the bras and kets correspond to different bases.
 


fzero said:
Check (1.2.12), which is a fundamental property of the inner product. That property holds even when the bras and kets correspond to different bases.

So, is it in this particular case that they are equal because we are considering the eigenkets of A, a hermitian operator? Because these are the eigenkets of A, does that mean that all operators on it are real? Even though it is the operator <α| acting on it and not A?
 


Questioneer said:
So, is it in this particular case that they are equal because we are considering the eigenkets of A, a hermitian operator? Because these are the eigenkets of A, does that mean that all operators on it are real? Even though it is the operator <α| acting on it and not A?

There's no assumption here that \langle \alpha | a&#039;\rangle is real, just that \langle \alpha | a&#039;\rangle = \langle a&#039;| \alpha\rangle^*. That is why the absolute value appears in the formula.
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top