Kinematics in Two-Dimensions - Explanation?

AI Thread Summary
The discussion focuses on solving a kinematics problem involving a rock climber throwing a first aid kit at an angle. The climber's initial velocity is 11 m/s at 65 degrees, and the goal is to find the vertical height between the two climbers when the kit is caught with zero vertical speed. The participant initially struggles with the kinematic equations and arrives at an incorrect height of 1.01 m instead of the correct 5.07 m. Key advice includes using trigonometric functions to resolve the initial velocity into its vertical component and emphasizing the importance of drawing diagrams to visualize the problem. The conversation highlights the need for clarity in understanding the equations and their application in physics problems.
RyanJF
Messages
16
Reaction score
0

Homework Statement



"A rock climber throws a small first aid kid to another climber who is higher up the mountain. The initial velocity of the kit is 11 m/s at an angle of 65 degrees above the horizontal. At the instant when the kit is caught, it is traveling horizontally, so its vertical speed is zero. What is the vertical height between the two climbers?"

Known data:

Voy = 11 m/s
Vy = 0 m/s
Ay = -9.8 m/s²

Homework Equations



Kinematics equations

The Attempt at a Solution



Alright, so I know the answer is 5.07m, but I have no idea how to get it.

If I use the equation Vy = Voy + AyT and solve for time, I get T = Vy - Voy / A. Plugging in the numbers for the variables, I get an answer of 1.122 seconds = -11 / -9.8. If I plug the value of 1.122 into an equation for y (displacement), I consistently end up with an answer that's off by over 1m.

Here's what I using:

y = 1/2 (Voy + Vy)t

so

6.171 = 1/2 (11)1.122

Needless to say, that answer is 1.01 m from the actual answer of 5.07 m.

I've been stuck for the better part of an hour, trying to figure out how I can solve this equation on my own. I really enjoy physics, and have considered majoring in it (I'm not the best at figuring mathematical things out on my own, but once I get it, I can apply concepts to virtually anything), but not being able to figure out seemingly simple things like this really throws me off.

Using Google and Bing, I've searched both on here and on other websites for an explanation to this problem, yet everything uses equations that are not at all familiar to me. My book and my teacher have only provided the basic equations of kinematics (e.g., V² = Vo² + 2ax), so all of these other bizarre things completely trip me up.

The equation I finally used to solve the problem, also found online, and was not something I learned in class.

It was:

y = Voy²sin(a)/(2g), with G standing for "gravity", or, more correctly, the acceleration of gravity.

I wouldn't have a problem with this sort of thing if we were given equations like this, but unfortunately, we're not.

I'd very much appreciate if someone were to explain how to solve this problem to me, preferably with an even mix of words and math, rather than all one or the other.

Thanks.
 
Physics news on Phys.org
v=0
u=11*sin(65)
g=9.8

use one of the kinematics equations and get your answer...(the 3 equations of motion that is.)
 
I thought I already explained that that wasn't working...

And my class was never given the "three equations of motion". =\
 
Voy = 11 m/s is incorrect. You were given the velocity of the resultant: 11m/s at 65degrees above the horizontal

Using SOH CAH TOA you can get Voy.
sin (65) = Opposite/11.2m/s
sin (65) * 11.2m/s = Opposite
Opposite = 10.151m/s
Voy = 10.151m/s

You should be able to get the rest, just remember to read the question carefully and draw a picture of the situation, the vectors (right angle triangles of the vertical and horizontal component, and the resultant of those components) are extremely important to draw.

Just as a note The legend said this exact thing, but didn't explain it in any detail.
 
yup, i should have remembered to point out exactly what his mistake was.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top