Kinematics problem -- A lift ascends from rest with uniform acceleration

AI Thread Summary
A lift ascends with a uniform acceleration of 4 m/s², covering a total distance of 28 meters in 8 seconds before coming to rest with the same rate of retardation. The problem requires determining the time spent moving at a uniform velocity and calculating that velocity. A hint suggests that the time spent accelerating is equal to the time spent decelerating. The final uniform velocity is given as 4 m/s, and participants are encouraged to show their work rather than request complete solutions. The discussion emphasizes the use of kinematic equations to solve for unknowns in the problem.
D.Man Hazarika
Messages
7
Reaction score
0

Homework Statement



A lift ascends from rest with uniform acceleration of 4m/s², then it moves with uniform velocity and finally comes to rest with uniform retardation of 4m/s². If the total distance covered during ascending by the lift is 28m and the total time for ascending 8s respectively, then find the time for which the lift moves with uniform velocity. Also find its uniform velocity.

Homework Equations

The Attempt at a Solution


I am trying to find the time for acceleration, retardation and uniform velocity separately by using equations of motion...but somehow I am not being able to solve it...the information looks inappropriate.
(The answer given is 4m/s)
 
Physics news on Phys.org
You need to set up a system of equations. You have the time and acceleration.
 
D.Man Hazarika said:

Homework Statement



A lift ascends from rest with uniform acceleration of 4m/s², then it moves with uniform velocity and finally comes to rest with uniform retardation of 4m/s². If the total distance covered during ascending by the lift is 28m and the total time for ascending 8s respectively, then find the time for which the lift moves with uniform velocity. Also find its uniform velocity.

Homework Equations

The Attempt at a Solution


I am trying to find the time for acceleration, retardation and uniform velocity separately by using equations of motion...but somehow I am not being able to solve it...the information looks inappropriate.
(The answer given is 4m/s)
Well, you should show your best attempt at solution.

Hint: since the elevator starts and stops with the same magnitude of acceleration, namely 4 m/s2, it would be reasonable to assume that the amount of time spent accelerating to the unknown constant velocity is the same amount of time required to come to a stop. You should be able to write some kinematics equations knowing the total time and distance to solve for the unknown constant velocity.
 
Please solve it
 
D.Man Hazarika said:
Please solve it
Sorry, that's your job. The Rules of PF prohibit members from providing full solutions to HW problems in the HW forums.

We've given you some hints on how to find a solution, so take the next step and show us what you can do with this problem.
 
Ok, I solved it, now you solve it.
 
  • Like
Likes D.Man Hazarika
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top