Kinematics: two runners with different and non-constant accelerations

Click For Summary
SUMMARY

This discussion analyzes the kinematics of two runners, A and B, with different non-constant accelerations. The equations of motion for both runners are derived, with runner A's acceleration calculated as ##a_A=\frac{40}{17.92} m/s^2## and runner B's acceleration as ##a_B=\frac{40}{21.12} m/s^2##. The time taken for runner A to reach 100 meters is determined to be ##t_{100A}=14.6s##, while runner B takes ##t_{100B}=14.9s##, indicating that runner A reaches the finish line first. The discussion also highlights the necessity of incorporating the correct time variables in the velocity equations to achieve accurate results.

PREREQUISITES
  • Understanding of kinematic equations and motion analysis
  • Familiarity with calculus, specifically integration techniques
  • Knowledge of exponential functions and their applications in motion
  • Ability to manipulate and solve algebraic equations
NEXT STEPS
  • Study the derivation of kinematic equations for non-constant acceleration
  • Learn about the application of exponential decay in motion analysis
  • Explore advanced integration techniques for solving motion problems
  • Investigate the impact of variable acceleration on overall motion dynamics
USEFUL FOR

Students and educators in physics, particularly those focusing on kinematics, as well as athletes and coaches interested in optimizing performance through understanding acceleration dynamics.

lorenz0
Messages
151
Reaction score
28
Homework Statement
In a 100m race, two runners run the first 40m both in ##t_1=5s##. Runner A runs with a constant and maximal acceleration ##a_A## for the first ##2.8s## and then runs at constant speed ##v_A##. The second runner B runs at a constant and maximal acceleration ##a_B## for the first ##3.2s## and then he also runs at a constant speed ##v_B##. Determine:
1) who wins the race and the time he takes to do so;
2) how much time runner B would take to run the 100m if, after having achieved the maximum speed ##v_B##, started decelerating with ##a=-kv##, where ##k=0.05 s^{-1}##
Relevant Equations
##x(t)=x_0+v_0 t+\frac{1}{2}at^2, v(t)=v_0+at, a=\frac{dv}{dt}, v=\frac{dx}{dt}##
1. $$x_{A}(t)=\begin{cases}\frac{1}{2}a_A t^2 & 0\leq t\leq 2.8\\ \frac{1}{2}a_A 2.8^2 +v_A t & t>2.8\end{cases}=\begin{cases}\frac{1}{2}a_A t^2 & 0\leq t\leq 2.8\\ \frac{1}{2}a_A 2.8^2 +a_A\cdot 2.8\cdot t & t>2.8\end{cases}$$ so ##x_A(5)=40## implies ##a_A=\frac{40}{17.92}m/s##. Similarly for B we have $$x_{B}(t)=\begin{cases}\frac{1}{2}a_B t^2 & 0\leq t\leq 3.2\\ \frac{1}{2}a_B 3.2^2 +v_B t & t>3.2\end{cases}=\begin{cases}\frac{1}{2}a_B t^2 & 0\leq t\leq 3.2\\ \frac{1}{2}a_B 3.2^2 +a_B\cdot 3.2\cdot t & t>3.2\end{cases}$$ so ##x_B(5)=40## implies ##a_B=\frac{40}{21.12}m/s##. Thus the time ##t_{100A}## that it takes for A to reach 100 m is $$100=\frac{1}{2}a_A 2.8^2 +a_A\cdot 2.8\cdot t_{100A}\Rightarrow t_{100A}=\frac{1}{2}(\frac{200}{2.8 a_A}-2.8)=14.6s$$. Similarly, the time ##t_{100B}## that it takes for B to reach 100m is $$100=\frac{1}{2}a_B\cdot 3.2^2+a_B\cdot 3.2\cdot t_{100B}\Rightarrow t_{100B}=\frac{1}{2}(\frac{200}{3.2a_B}-3.2)=14.9s$$ so A reaches the 100m before B does.

2. $$a=\frac{dv}{dt}=-kv\Rightarrow \frac{dv}{v}=-kdt\Rightarrow \int_{v_B}^{v(t)}\frac{dv'}{v'}=-k\int_{3.2}^{t}dt' \Rightarrow v(t)=v_B e^{3.2k-kt}=\frac{dx}{dt}\Rightarrow \int_{40}^{100}dx=\int_{3.2}^{t_{100}}v_B e^{3.2k-kt}dt\Rightarrow 60=a_B\cdot 3.2e^{3.2k}\int_{3.2}^{t_{100}}e^{-kt}dt\Rightarrow t_{100}=-20\cdot\ln(\frac{101}{200}e^{-\frac{3.2}{20}})\approx 16.864 s$$
 
Last edited:
Physics news on Phys.org
They both run 40m in 5s. They must run the second 60m at a greater average speed than the first 40m. Therefore, both should take less than 12.5s, and not nearly 15s.

Your answers to 1) can't be right.
 
##a_A## and ##a_B## didn't come out right because you didn't use ##t_v=5-t_a## in the ##v## terms
 

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K