Kinetic energy of a rod in a circle

quasar_4
Messages
273
Reaction score
0

Homework Statement



Suppose that we have a uniform rod inside a circle. It's free to slide with its ends on the inside of the circle, and it subtends an angle of 120 degrees at the center of the circle. I'm looking for the Lagrangian of this system.

Homework Equations



I = ml^2/12 for the rod about its center
L = T-V

The Attempt at a Solution



Here's the problem. It seems to me that the ends of the rod (near the circle) are moving faster than the middle of the rod... which would mean that I can't use use the center of mass coordinates to find the kinetic energy. So I'm a bit confused about how to establish the correct kinetic energy - this is where I need help (I can get the potential, I think).

Can anyone help?
 
Physics news on Phys.org
Imagine your rod is attached to a massless 2nd rod that can rotate about its other end. You can now rotate this 2nd rod and cause your actual rod to move in a circle. This is the exact same setup as you have now with the circular boundary.

So it will only have rotational kinetic energy defined by:

KE = \tfrac12 I \omega^2

The difficulty is finding the moment of inertia for this new setup. Although you can find it easily using the parallel axis theorem.

EDIT: It reminds me of the ride called the Sea Dragon, or Kamikaze, where you are seated in a boat that swings back and forth (and sometimes all the way around in a circle). Where the boat is your rod, and it swings around a pivot that is attached to by massless arms.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top