LaGrange Error and power series

SoaringQuail
Messages
3
Reaction score
0
There's a homework problem that I've been struggling over:

Find a formula for the truncation error if we use 1 + x^2 + x^4 +x^6 to approximate 1/(1-x^2) over the interval (-1, 1).

Now, I assume that you need to use LaGrange error but I'm not sure how to proceed. Any help would be greatly appreciated.
 
Physics news on Phys.org
SoaringQuail said:
There's a homework problem that I've been struggling over:

Find a formula for the truncation error if we use 1 + x^2 + x^4 +x^6 to approximate 1/(1-x^2) over the interval (-1, 1).

Now, I assume that you need to use LaGrange error but I'm not sure how to proceed. Any help would be greatly appreciated.

Since you mention LaGrange error, presumably you know the formula for it! Off the top of my head, I believe it is
E\le \frac{M}{(n+1)!}|x-a|^{n+1}
where M is an upper bound on the n+ 1 derivative. Here, by the way, you can take either n+1= 7 or replace "x2" by "y" and use n+1= 4 with the formula in y.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top