Lagrange multipliers with vectors and matrices

IniquiTrance
Messages
185
Reaction score
0
My textbook is using Lagrange multipliers in a way I'm not familiar with.

F(w,λ)=wCwT-λ(wuT-1)

Why is the first order necessary condition?:

2wC-λu=0

Is it because:
\nablaF=2wC-λu

Why does \nablaF equal this?

Many thanks!

Edit: C is a covariance matrix
 
Physics news on Phys.org
The easiest way to think about these things is to use http://en.wikipedia.org/wiki/Einstein_notation" .

F = wmCmnwn-λ(wmum-1)

where repeated indices are summed over their range.

Then using ∂wiwj = δij, where δij is the http://en.wikipedia.org/wiki/Kronecker_delta"

We can calculate ∇F:

(∇F)i = ∂wiF = δimCmnwn+wmCmnδin-λ(δimum-0) = Cinwn+wmCmi-λui = 2wmCmi-λui = (2wC - λu)i

where we have used the fact that C and δ are symmetric matrices.

This calculation can also be done symbolically, but I find it easier (and often make less errors with transposes etc) using index notation. It also generalises to more complicated situations where you have covariant and contravariant indices, and different classes of indices (such as holomorphic and antiholomorphic in complex cases), http://en.wikipedia.org/wiki/DeWitt_notation" .
 
Last edited by a moderator:
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top